年喷饰金属表面 30 万平方米 竣工环境保护验收监测报告

建设单位: 广德旭升涂装有限公司

检测单位: 合肥森力检测技术服务有限公司

编制单位: 广德旭升涂装有限公司

二〇二一年六月

建设单位法人代表: (签字)

编制单位法人代表: (签字)

建设单位 (盖章) 编制单位 (盖章)

电话: 13329130101 电话: 13329130101

传真: / 传真: /

邮编: 242000 邮编: 242000

安徽省广德经济开发 安徽省广德经济开发 地址:

区北区区北区

目录

第一部分 验收监测报告

第二部分 验收意见

第三部分 总结报告

第一部分 验收监测报告

目 录

$\overline{}$	建设项目工程概况	4
	1.1 项目基本情况	4
	1.2 验收工作概况	5
<u> </u>	验收依据	5
三、	工程建设情况	7
	3.1 地理位置及平面布置	7
	3.2 建设内容	7
	3.2.1 具体建设内容	7
	3.2.2 产品方案	9
	3.3.3 公用工程	9
	3.3.4 劳动定员及生产班制	9
	3.3 主要生产设备及原辅材料	9
	3.4 水源及水平衡	10
	3.5 生产工艺	11
	3.6 项目变动情况	12
四、	环境保护设施	13
	4.1 主要污染源	13
	4.2 污染物治理设施	13
	4.2.1 废水	13
	4.2.2 废气	14
	4.2.3 噪声	14
	4.2.4 固体废物	14
	4.3 环保设施投资及"单同时"落实情况	14
五、	环境影响报告书主要结论与建议及其审批部门审批决定	17
	5.1 环境影响报告书主要结论与建议	17
	5.1.1 环评报告主要结论	17
	5.1.2 环评报告建议	17
	5.2 审批部门审批	18
六、	验收执行标准	20
	6.1 废水评价标准	20
	6.2 废气评价标准	20
	6.3 噪声评价标准	21
	6.4 固体废物评价标准	21
七、	验收监测	22
	71 验收监测内容	22

	7.2 监测点位	22
八、	质量保证及质量控制	23
	8.1 方法仪器	23
	8.2 质量保证措施	24
	8.3 质控信息	25
	8.3.1 噪声监测质量控制	25
九、	验收监测结果	26
	9.1 生产工况	26
	9.2 污染物排放监测结果	26
	9.2.1 废水	26
	9.2.2 废气	27
	9.2.3 噪声治理设施	32
十、	验收监测结论	33
	10.1 结论	33
	10.2 建议	34
建设	殳项目工程竣工环境保护"三同时"验收登记表	35
	附件 1 环评批复	36
	附件 2 排污登记回执	39
	附件 3 危废处置协议	40
	附件4 生产日报表	41
	附件 5 环保投资一览表	44
	附件 6 原材料及能源消耗一览表	45
	附件7 主要设备一览表	46
	附件 8 劳动定员及生产班制	47
	附件 9 检测报告	48
	附件 10 自查报告	54
	附图 1 地理位置图	66
	附图 2 平面布置图	67
	附图 3 雨污管网图	68
	附图 4 卫生防护距离图	69
	附图 5 环保设施及监测照片	70

一、建设项目工程概况

1.1 项目基本情况

项目名称: 年喷饰金属表面 30 万平方米

建设性质:新建

建设单位:广德旭升涂装有限公司

行业类别:[C3360]金属表面处理及热处理加工

建设地点:安徽广德经济开发区北区

建设规模:项目总占地面积 11999.88m²,年喷饰金属表面 30 万平方米。

投资总概算:项目总投资 1300 万元,环保投资 30 万元,占总投资的 2.3%

劳动定员及工作班制:项目职工 11 人,年工作时间 300 天,单班制,每班 8 小时,年生产时数 2400 小时。

2013 年,广德旭升涂装有限公司投资 1300 万元,在广德县经济开发区北区建设 "年喷饰金属表面 30 万平方米"项目。该项目 2013 年在广德县发展和改革委备案,项目编码为 2013-066 号。广德旭升涂装有限公司于 2013 年委托南京科泓环保技术有限责任公司承担《广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目环境影响报告表》的编制工作。2013 年 9 月 29 日广德县环境保护局以广环审[2013]124 号文予以批复。根据广德县发展和改革委员会《关于年喷饰金属表面 30 万平方米》的备案通知书(项目备案(2013)066 号)、《中华人民共和国环境保护法》、《中华人民共和国环境影响评价法》和国务院(1998)第 253 号《关于建设项目环境保护管理条例》中的有关规定,为检查建设单位执行国家关于建设项目"三同时"制度及环境保护措施落实情况,广德旭升涂装有限公司在 2021 年 5 月启动了"年喷饰金属表面 30 万平方米"项目竣工环境保护验收工作。公司组织成立了验收工作组,委托合肥森力检测技术服务有限公司于 2021 年 5 月 14~15 日现场采样监测,根据监测及检查结果,结合项目验收监测方案和相关技术资料的基础上于 2021 年 6 月编制完成验收报告。

1.2 验收工作概况

根据《中华人民共和国环境保护法》、国务院令第682号《建设项目环境保护管理条例》和国环规环评〔2017〕4号《建设项目竣工环境保护验收暂行办法》的要求和规定,为检查建设单位执行国家关于建设项目"三同时"制度及环境保护措施落实情况,广德旭升涂装有限公司于2021年5月启动了"年喷饰金属表面30万平方米项目"竣工环境保护验收工作。公司组织成立了验收工作组,开展了自查工作,委托合肥森力检测技术服务有限公司于2021年5月14日~15日现场采样监测,并出具检测报告。

二、验收依据

- 1、《建设项目竣工环境保护验收暂行办法》(国环规环评〔2017〕4号);
- 2、《建设项目竣工环境保护验收技术指南污染影响类》(生态环境部公告 2018 年第 9 号, 2018 年 5 月 15 日);
 - 3、《国家危险废物名录》(2021版);
 - 4、《污水综合排放标准》 (GB8978-1996);
 - 5、《大气污染物综合排放标准》 (GB16297-1996);
 - 6、《工业企业厂界环境噪声排放标准》(GB12348-2008);
 - 7、《工业炉窑大气污染综合排放标准》(环大气[2019]56号)
- 8、《危险废物贮存污染控制标准》(GB18597-2001, 及 2013 年修改单 (公告 2013 年第 36 号)标准要求);
- 9、《一般工业固体废弃物贮存、处置场污染控制标准》 (GB18599-2001,及 2013年修改单(公告 2013年第 36 号)标准要求);
- 10、《广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目环境影响报告表》 (南京科泓环保有限责任公司, 2013 年);
- 11、广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目备案表 (原广德县发展与改革委,项目备案号 2013-066, 2013 年);
- 12、关于《关于关于广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目环境 影响评价报告表的批复》(原广德县环境保护局,广环审[2013]124 号, 2013 年 9 月 29 日);
- 13、《广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目检测报告》(合肥森力检测技术服务有限公司、2021 年 5 月);
 - 14、广德旭升涂装有限公司提供的其他相关资料。

三、工程建设情况

3.1 地理位置及平面布置

项目位于广德市开发区,项目总占地面积 11999.88m²,中心坐标(东经119.42697912,北纬 31.01618583),项目位置图见附图 1,平面布置图见附图 2,雨污管网图见附图 3,卫生防护距离见附图 4。

3.2 建设内容

3.2.1 具体建设内容

具体建设内容见表 3-1。

表 3-1 项目建设内容

工程类别	单项 工程 名称	环评工程内容	环评设计能力/规模	实际建设内容	备注
主体工程	生产	项目建有1栋车间,设置了 抛丸机、双工位喷粉台、 燃煤喷塑流水线、高压静 电发生器、电烘箱等设备	生产车间为 1500m²; 其生产能力可满足 年喷饰 30 万平方米。	项目建有1栋车间,设置了双 工位喷粉台、燃气喷塑流水 线、高压静电发生器、电烘箱 等设备	煤喷塑流
辅助工程	办公 楼	1 栋 3 层,位于项目西北 角;项目食堂位于办公楼 一层西北角。工作人员休 息室位于办公楼的三层	综合楼的总体建筑 面积为 1260m²	未建	/
上位	门卫	1间1层,位于主入口的 一侧	建筑面积 15m²	1 间 1 层,位于主人口的一侧	/
	仓库	位于厂区北侧,办公楼的 东侧,仓库内分 为原料仓 库和成品仓库,用于储存 原辅材料和成品		位于厂区北侧, 仓库内分为原料仓库和成品仓库, 用于储存原辅材料和成品	
储运	厂外	原辅材料由供货单位运输 至厂区	/	原辅材料由供货单位运输至 厂区	/
工程	运输	产品委托社会运输力量承 担或用户自行提取	/	产品委托社会运输力量承担 或用户自行提取	/
	厂内 运输	叉车或手推车	/	购置 4 辆	/

工程类别	单项 工程 名称	环评工程内容	环评设计能力/规模	实际建设内容	备注
	供水 系统	配套生活、生产给水管网	接自安徽广德经济 开发区北区供水管 网提供,用水量 660m³/a	接自安徽广德经济开发区北 区供水管网提供,用水量 220m³/a	厂区员工 实际用水 量不大
	供电系统	项目设配电房1座,配置电力变压器等设备;位于 厂区的西南角。	25m²,由开发区北区	项目设配电房 1 座, 配置电力变压器等设备; 由开发区北区供电网提供, 用电量 10 万 kWh/a	
	排水系统	雨污分流体制,雨水管网 总排口接至开发区雨水主 管网	排废水量 192m³/a	排废水量 66m³/a	实际用水 量不多, 产生的废 水也少
	供热	项目固化工序需一定热源,在开发区天然气管网铺设到位之前热风炉采用低硫煤作为介质,到位之后釆用天然气,热风炉位于车间中	年需天然气 2.9 万 m³	年需天然气 2.9 万 m³	/
	废气 治理	热风炉废气经 15m 高排气筒达标排放; 固化工序中产生的非甲烷总炷经活性炭吸附后由烘箱顶部的排气筒(15m 高) 达标排放		热风炉(固化工序)废气经 15m 高 1#排气筒达标排放; 喷涂工序产生的颗粒物经"滤 芯—旋风—滤芯"处理达标后 由 15m 高 2#排气筒排放	
公用 工程		食堂油烟通过一台油烟净 化器去除后,由高于屋顶 的排气筒外排	/	/	/
	废水 治理	雨污分流,生活污水设化 粪池地埋式污水处理设施 进行处理		雨污分流,生活污水经化粪池处理后达到邱村镇污水处理厂接管要求后接管。化粪池实际设计能力为 5.0m³/d	,
	固废处理	项目设一般固废堆场、危 险废物堆场	分别占地 10m²	项目已建危险废物暂存库	/
	噪声 处理	选用低噪声设备、釆取设 备减振、风机消声、隔声 等措施	/	用低噪声设备、釆取设备减 振、风机消声、隔声等措施	/
	绿化	绿化面积 1400m²	绿化率占地面积 11.7%	厂区内栽种树木、草地绿化	/

3.2.2 产品方案

本项目产品生产方案见表 3-2。

表 3-2 产品方案表

序号	生产线	产品名称	环评设计生产能力	实际生产能力
1	喷涂生产线	金属表面喷饰	30万平方米	30 万平方米

3.3.3 公用工程

- (1) 供水: 本项目用水总量为 220m³/a, 由广德经济开发区北区引入厂区。
- (2) 排水:本项目运行期无生产废水排放,项目废水主要为生活污水,污水量为66m³/a,经化粪池预处理达到邱村镇污水处理厂接管标准后,经开发区园区污水管网汇入邱村镇污水处理厂。
 - (3) 供电: 本项目供电由广德县开发区北区供电管网供给, 年用电量 10 万 kWh。
- (4) 供热: 本项目烘干工序中采用热风炉进行加热, 燃料为天然气, 由开发区天然气管网供给, 年用天然气量为 2.9 万 m³。
 - (5) 储运:
- ①储存:项目使用各种原材料、成品均储存在仓库内,仓库内分为原料区和成品区。仓库位于办公区的东侧、生产车间的北侧,方便原材料的运入和成品的外运。
- ②运输: 厂外运输利用社会车辆协作解决; 厂内运输主要为原材料及产品的运输, 主要靠手推车搬运, 人工辅助。
 - (6) 绿化: 厂区内栽种树木、草地绿化

3.3.4 劳动定员及生产班制

- (1) 职工人数:项目职工11人。
- (2) 工作制度: 本项目实行一班制, 每班工作 8h, 年工作 300 天, 年生产小时数 2400 小时。

3.3 主要生产设备及原辅材料

本项目主要生产设备见表 3-3. 项目原辅材料见表 3-4。

表 3-3 项目生产设备一览表

序号	设备名称	单位	型号	环评数量	实际数量
1	燃煤喷塑水线	套	HXCRW-JPR	1	0
2	燃气喷塑流水线	套	/	0	1
3	双工位喷粉台	台	HXC-SGPT	1	1
4	高压静电发生器	台	HXC-GYJDFSQ	3	3
5	电烘箱	台	HXC-DHX	1	1
6	抛丸机	台	HXC-PWJ	1	0
7	热风炉	台	/	1	1

表 3-4 原辅材料消耗表

序 号	类别	单位	型号	单位	环评年用量	实际年用量
1		环氧树脂	E12	t	9.00	30
2		树脂	6088	t	13.50	0
3		流平剂	503	t	0.38	0
4	原辅 材料	增光剂	701	t	0.38	0
5	1311	颜料	/	t	1.01	0
6		蜡	/	t	0.11	0
7		填料	/	t	13.13	0
1		新鲜水	/	m^3	660	220
2	_ _ 能源 _ 材料	电	/	万 kWh	10	10
3		天然气	/	m ³	28235	29000
4		煤	/	t	40	0

3.4 水源及水平衡

本项目供水由广德经济开发区北区引入厂区,供项目区生产、生活和消防等用水,采用生产、生活、消防合并的给水方案,各用水点就近接入,即可满足生产、生活及消防用水的需要。项目生产过程中产生少量冷却废水。项目用水主要是工作人员生活用水,工作人员人数为11人,用水总量约为220m³/a。项目外排废水主要是生活污水和少量冷却废水,生活污水和冷却废水经过化粪池预处理达到邱村镇污水处理厂接管

标准后,经园区污水管网汇入邱村镇污水处理厂。本项目水量平衡见图 3-1。

沙却用水

图 3-1 本项目水量平衡图 (t/d)

3.5 生产工艺

本项目所喷饰的 30 万平方米金属表面件,是为别的厂家进行金属加工喷饰的工序,喷饰过程中所用到的原料均为外购已加工混合好的粉末成品,不在本厂区内进行混合搅拌。

1) 项目生产工艺流程简介

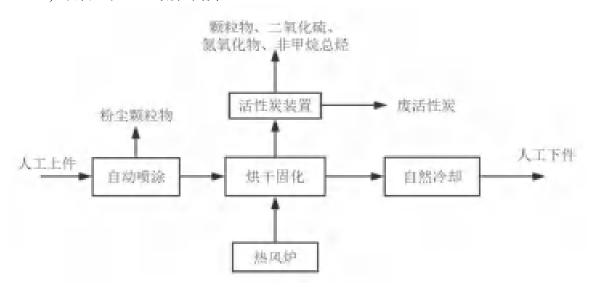


图 3-2 生产工艺流程图

工艺说明:

- ① 自动喷涂: 经过简单处理后的工件进入燃气喷涂流水线, 在去除金属表面及表层的水分后经喷涂台进行喷涂。喷涂过程中产生的颗粒物经"滤芯—旋风—滤芯"处理处置后由 15m 高排气筒排放, 未回收的颗粒物则无组织排放。
 - ② 烘干固化: 喷涂后工件随着输送机自动进入燃气烘箱进行烘干固化 (固化温度

达到 200℃,由热风炉进行间接加热),被喷涂的涂层在此进行固化过程。

③ 自然冷却: 经固化后的工件从烘箱送出后自然冷却, 而后由工人下件送至成品仓库待返回工件的厂家。

项目烘干和固化工序需要的温度采用天然气间接加热提供, 因此燃气过程中会产生一定量的燃气废气。

3.6 项目变动情况

- 1、环评生产设备: 抛丸机1台、燃煤喷塑水线1套; 实际生产设备: 原喷丸处理工艺取消, 无抛丸机; 燃煤喷塑水线改建成燃气喷塑流水线。
- 2、项目主体建设:环评辅助工程中 1 栋 3 层办公楼,实际项目未建设;危险废物 堆场改建成危险废物暂存库;雨污分流,生活污水经化粪池进行处理,环评设计能力 为 1.0m³/d,实际建设设计能力为 5.0m³/d
 - 3、环评设计项目职工为10人;实际项目职工为11人。
- 4、环评设计给水量为 660m³/a, 由于员工实际用水量不大, 实际给水量为 220m³/a; 废水排水量环评设计为 192m³/a, 实际过程中主要产生的为生活废水及少量冷却废水, 实际产生的废水为 66m³/a。
 - 5、原辅材料环评设计用量为37.51吨、实际用量为30吨。

四、环境保护设施

4.1 主要污染源

根据该项目工程概况和工艺特点,其主要污染源及污染因子识别见下表 4-1。

表 4-1 污染源与污染因子识别表

内容 类型	排放源	污染物名称	防治措施
大气污染物	热风炉 (固化工 序)	颗粒物、SO ₂ 、NOx、非甲烷 总烃	颗粒物、SO ₂ 、NO _X 、非甲烷总烃 经活性炭吸附后经 15 米高 1#排 风筒达标后排放
人们来彻	喷涂车间	颗粒物	喷涂过程中产生的颗粒物经"滤芯—旋风—滤芯"处理后经 15m 高 2#排气筒达标后排放
水污染物	生活污水	COD、SS、NH ₃ -N	化粪池
	日常生活	生活垃圾	由当地环卫部门进行处理
固体废物	烘干固化工序	废活性炭	委托有资质单位进行处理
噪声	双工位喷粉台	噪声	合理加装防震垫或设置隔消声片等,以降低机器的噪声;加强场内绿化,种植常绿树种
其他	无	无	无

4.2 污染物治理设施

4.2.1 废水

根据项目生产特点,外排废水主要为生活污水,废水主要污染物有COD、SS、NH₃-N等。生活污水经化粪池预处理达到邱村镇污水处理厂接管标准后,经开发区园区污水管网汇入邱村镇污水处理厂。

4.2.2 废气

本项目主要废气为非甲烷总烃、颗粒物、NOx 和 SO₂。热风炉(固化工序)产生的颗粒物、SO₂、NOx、非甲烷总烃经活性炭吸附后由 15m 高 1#排气筒达标排放;喷涂工序产生的废气颗粒物经"滤芯—旋风—滤芯"处理后由 15m 高 2#排气筒达标排放。

4.2.3 噪声

本项目主要噪声污染源于双工位喷粉台等产生的噪声,采取措施为合理加装防震垫或设置隔消声片,加强场内绿化,种植常绿树种及距离衰减等。

4.2.4 固体废物

本项目固体废物主要为员工生活垃圾、废活性炭等。

(1) 一般固废

本项目产生一般固体废物主要为职工日常生活中产生的生活垃圾,采取的主要措施是由企业集中收集后交由当地环卫部门统一进行清运处理。

(2) 危险废物 (废活性炭)

本项目在烘干固化工序中产生的废气采用活性炭吸附装置进行吸附处理,因此会产生一定的废活性炭。采取的处理措施为集中收集后暂存于危险废物暂存库,委托有资质单位进行处理。

4.3 环保设施投资及"单同时"落实情况

项目位于广德市开发区北区园兴路以南、230 省道以西,项目总占地面积 11999.88m²,中心坐标(经度119.42697912,纬度31.01618583)。

4.3.1 环保设施投资情况

环评设计总投资 3000 万元,环保投资 13.5 万元,占总投资的 0.45%;实际总投资 1300 万,实际环保投资 30 万,占实际总投资的 2.3%。如表 4-2 所示。

表 4-2 项目环保投资一览表 (单位: 万元)

项目	环保建设内容	环评投资 (万元)	实际投资 (万元)	
本よ	化粪池	2.0	10	
废水	雨、污分流管网	2.0	10	
	2 根 15m 高排气筒	1.0	3.5	
废气	废气回收装置 (活性炭吸附)	2.0	5.0	
	通风设施	2.0	3.0	
固体废 物	废物堆场	0.5	2.0	
噪声	减震设施	0.5	1.5	
绿化	绿化面积 1400m²	3.5	5.0	
合计	/	13.5	30	

4.3.2"环评批复"落实情况一览表

如表 4-3 所示。

表 4-3 "环评批复"落实情况一览表

序号			环评批复治理设施	验收要求	实际建设情况
1	水污染治理	生活污水	项目实施雨污分流。厂区 雨水直接排入集中区雨水 管网;项目产生的生活污 水产生量较小,近期经化 粪池地埋式污水处理设施 处理后经开发区污水管网 排入山北河,远期排入开 发区水处理厂进行处理后 排入山北河,最终汇入无 量溪。		生活废水及少量冷却废水由建造的化粪池处理达到邱村镇污水处理厂接管标准后,经园区污水管网汇入邱村镇污水处理厂。已落实
2	大气 決 治理	水线 (热风	(GB9078-1996)中相关标准限值;烘干固化工序中产生的非甲烷总烃经活性炭吸附后由烘箱顶部的	物、NOx、SO ₂ 排放执行 《工业炉窑大气污染综 合排放标准》(环大气 [2019]56 号)中的排放标 准限值;非甲烷总烃排放 执行执行《大气污染物综 合排放标准》 (GB16297-1996)表 2 中的 二级排放标准限值;无组 织颗粒物、非甲烷总烃的	生的燃气废气颗粒物、SO ₂ 、NO _x 、非甲烷总烃 经活性炭吸附后通过 15m 高 1#排气筒达标排放; 喷涂工序产生的废气颗粒物经"滤芯—旋风—滤芯"处理后由 15m 高 2#排气筒达标排放。已完成

序号			环评批复治理设施	验收要求	实际建设情况
			综合排放标准》 (GB16297-1996)相关限 值要求。无组织排放的粉 尘可满足《大气污染物综 合排放标准》 (GB16297-1996)表 2 中的 二级排放标准限值。	合排放标准》 (GB16297-1996)表 2 中的 二级排放标准限值。	
3	噪声治理	备的运行	本项目噪声主要为双工位 喷粉台等产生的噪声,经 减震降噪措施及距离衰减 后,项目各场界噪声可满 足《工业企业厂界环境噪 声排放标准》 (GB12348-2008)中的3类 标准	中3类功能区标准	设置减震垫、选用低噪 设备等措施降低产噪设 备的噪声。已完成
4	固废治理	序产生的废 活性炭、污 水处理过程	做好项目生产固废污染防治工作。废活性炭属于危险废物,危废临时贮存严格执行《危险废物贮存污染控制标准》 (GB18597-2001)相关要求,并交由有资质单位进行安全处置;生活垃圾、交环卫部门负责清运,铁锈和废钢珠外卖给相关商家。	一般工业固体废物满足《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)中的有关规定;危险废物满足《危险废物贮存污染控制标准》(GB18597-2001)中的规定。	一般固废:生活垃圾放置在垃圾箱中,由环卫部门做到日产日清; 危险固废:项目产生的危险废物储存在危废暂存间,交有危险废物处置。

五、环境影响报告书主要结论与建议及其审批部门审批决定

5.1 环境影响报告书主要结论与建议

5.1.1 环评报告主要结论

关于《广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目环境报告表》结论:

综上所述,本项目的建设符合国家及地方产业政策,选址合理。各项污染物可以达标排放,对环境的影响也比较小,不会造成区域环境功能的改变,从环境保护的角度来讲,本评价认为该项目在坚持"三同时"原则并采取一定的环保措施后,就地建设可行。

5.1.2 环评报告建议

关于《广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目环境报告表》建议:

- 1、在项目建设同时,应确保环保设施的建设,落实污染治理方案和建设资金,做到"专款专用",切实做到环保设施和主体工程"同时设计、同时施工、同时投产"。
- 2、企业应当实行环保目标厂长经理负责制,项目法人应对项目环保工作总负责, 把企业的环境保护工作列入生产管理中去,并且在生产中加以检查和落实,确保上述 环保措施的真正落实执行,保证污染物达标排放。
- 3、加强企业体系管理,开展清洁生产审核,提高员工的素质和能力,提高企业的管理水平和清洁生产水平。
- 4、加强生产管理,适用比较先进的生产设备,减少污染源的产生量、同时对设备定期检修,以防产生异常噪声对周围环境产生影响。
- 5、加强企业管理的同时,应注意对职工环境保护的宣传教育工作,提高全体员工的环保意识,做到环境保护,人人有责,积极探索进一步提高清洁生产水平。
- 6、加强场区绿化,美化环境,绿化点有建筑物周边、道路两旁、场界等,重点为办公区绿化隔离带与厂界绿化。绿化在美化场区环境的同时,还可起防污滞尘减噪功能、安全防护和绿化景观的作用。

5.2 审批部门审批

关于广德旭升涂装有限公司年喷饰表面 30 万平方米项目 环境影响评价报告表的批复

广环审(2013) 124 号

广德旭升涂装有限公司:

你公司报来的《广德旭升涂装有限公司年喷饰表面 30 万平方米项目环境影响报告表》(以下简称《报告表》) 收悉。在落实《报告表》提出的各项污染防治措施后,项目建设从环保角度分析是可行的,同意本项目在广德县经济开发区北区规划地块进行建设。《报告表》可作为项目建设和竣工环境保护验收依据。

- 一、本项目工艺流程主要是对金属件进行人工上件、喷丸、自动喷涂、烘干、冷却、下件处理;主要建设内容:生产车间一栋(内设抛丸机、双工位喷粉机、燃煤喷塑流水线、高压静电发生器、电烘箱等设备)、办公楼、运输、供水、排水、供电、供热等贮运工程及公用工程、环保工程等。
- 二、项目在具体实施建设过程中严格按环评报告所述生产工艺及产品方案组织生产,并按环评要求认真落实以下几项环境污染防治工作:
- 1、做好项目施工期的污染防治工作,加强对施工期扬尘的污染防治,对施工过程产生的"三废"集中收集,按《报告表》要求处理:安善处理工程渣土;施工结束后,及时拆除临时建筑物及清除建筑垃圾;合理安排高噪机械的施工时间,非必须连续施工工程禁止夜间施工,施工期场界噪声执行《建筑施工场界噪声限值》(GB12523-90)。
- 2、做好厂区生活废水污染防治工作,对生活废水采取化粪池、地埋式污水处理装置处理后综合利用,厂区内污水严禁未经处理直接外排。
- 3、做好生产废气污染防治工作,按报告表要求,热风炉废气经 15 米高排气简外排,确保满足《工业炉窑大气污染物排放标准》(GB9078-1996)相关标准限制要求;喷粉工序产生的粉尘经喷粉台自带的脉冲过滤回收系统进行回收;喷涂工序后烘干工序产生的有机废气经收集后经 15 米高排气简外排,确保厂内外排废气满足《大气污染物综合排放标准》(GB16297-1996)相关限值要求;做好洒水抑尘、及时清理沉降粉尘,

确保无组织粉尘满足《大气污染物综合排放标准》(GB16297-1996)表 2 中无组织排放 监控浓度限值要求。

- 4、做好生产固废污染防治工作,对生产过程抛丸工序产生的铁锈和磨损钢珠分类 收集后外售;废活性炭属于危废,收集后交由有资质单位处理,并按照《危险废物贮 存污染控制标准》(GB18597-2001)相关要求进行贮存;生活垃圾交由环卫部门统一 处理。
- 5、从厂区生产设计、设备选型安装和布局上做好生产噪声污染防治工作,保证厂界噪声满足《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类区标准要求。
- 6、本项目在北区天然气接通前可利用煤进行供热,接通后,企业应积极实施"煤改气",采用清洁能源进行供热,外购环氧树脂、颜料等原料为混合加工好的粉末成品,不得在厂区内进行混合搅拌工序。
- 7、本项目卫生防护距离为 50m, 项目卫生防护距离内不得新建居民、学校等敏感建筑物。
- 三、严格按项目申报规模、工艺及厂址进行生产,如项目性质、工艺、规模或地址发生变更需重新报批。

四、项目在落实各项污染防治措施后及时报请我局组织建设项目竣工环境保护验收、验收合格后方可正式投入生产。

广德县环境保护局 2013年9月29日

六、验收执行标准

6.1 废水评价标准

本项目采用雨、污分流的排水体制。雨水入雨水管网,废水来源于工作人员的生活污水。生活污水经化粪池预处理达到邱村镇污水处理厂接管标准后,经园区污水管网汇入邱村镇污水处理厂。

表 6-1 废水排放标准

废水排放标准 (单位: mg/L, pH 无量纲)						
	рН	COD	BOD ₅	NH ₃ -N	SS	
邱村镇污水处理厂接管标准	6~9	450	180	30	200	

备注: 括号外数值为水温>120 C 时控制指标, 括号内数值为水温<120 C 时控制指标。

6.2 废气评价标准

项目烘干固化工序采用使用热风炉,燃料采用天然气,燃烧废气中有组织颗粒物、NOx、SO₂执行《工业炉窑大气污染综合排放标准》(环大气[2019]56号)中的相关限值要求;非甲烷总烃排放执行《大气污染物综合排放标准》(GB16297-1996)表2中的二级排放标准限值。无组织颗粒物、非甲烷总烃的排放执行《大气污染物综合排放标准》(GB16297-1996)表2中的二级排放标准限值。

表 6-2 废气排放标准

ì	污染物名称	最高允许排放 浓度限值 (mg/m³)	排气筒高 度 (m)	排放速率 (kg/h)	无组织排放 最高浓度监 控限值 (mg/m³)	依据
	SO_2	200	15	/	/	《工业炉窑大气污
	氮氧化物	300	15	/	/	染综合排放标准》 (环大气[2019]56
有	颗粒物	30	15	/	/	号)
组织	非甲烷总烃	120	15	10	/	《大气污染物综合 排放标准》 (GB16297-1996)表 2中的二级排放标 准限值

ì	污染物名称	最高允许排放 浓度限值 (mg/m³)	排气筒高 度 (m)	排放速率 (kg/h)	无组织排放 最高浓度监 控限值 (mg/m³)	依据
无	颗粒物	/	/	/	1.0	《大气污染物综合 排放标准》
组织	非甲烷总烃	/	/	/	4.0	(GB16297-1996)表 2 中的二级排放标 准限值

6.3 噪声评价标准

项目场界噪声排放执行《工业企业厂界环境噪声排放标准》 (GB12348-2008)中的 3 类标准,具体标准值见表 6-3。

表 6-3 工业企业厂界环境噪声排放标准 (dB (A))

噪声排放标准 (单位: dB)							
《工业企业厂界环境噪声排 放标准》(GB12348-2008)	3 类标准	昼间: 65	夜间: 55				

6.4 固体废物评价标准

一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》(GB18599-2001)中的有关规定;危险废物执行《危险废物贮存污染控制标准》(GB18597-2001)中的规定。

七、验收监测

7.1 验收监测内容

本次验收监测主要内容如下表。

监测类别 监测位置 点位数 监测项目 监测频次 上风口1个点,下 颗粒物、氮氧化物、二氧 3次/天, 共两天 无组织废气 4 风口3个点 化硫、非甲烷总烃 颗粒物、氮氧化物、二氧 1#排气筒进出口 2 3次/天, 共两天 化硫、非甲烷总烃 有组织废气 2#排气筒进出口 2 颗粒物 3次/天, 共两天 每天白天1次,共 噪声 厂界外1米 厂界噪声 4 2天

表 7-1 验收监测内容

7.2 监测点位

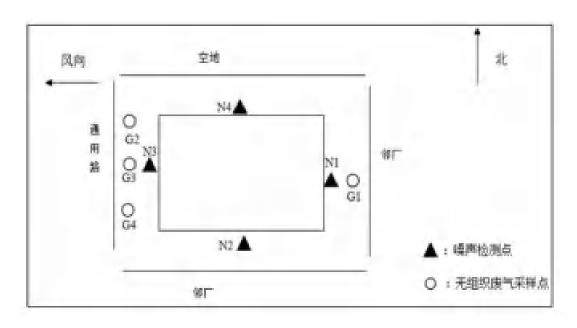


图 7-1 5月 14~15 日验收监测点位图

八、质量保证及质量控制

8.1 方法仪器

本项目监测分析方法依据及监测使用分析仪器见表 8-1。

表 8-1 监测分析方法及主要仪器设备一览表

样品类型	检测项目	标准 (方法) 名称及编号 (含年号)	检出限
	颗粒物	《固定污染源排气中颗粒物测定与气态污染物采样 方法》GB/T16157-1996 及修改版	20mg/m³
	颗粒物	《固定污染源废气 低浓度颗粒物的测定 重量法》 HJ836-2017	1.0mg/m³
有组织废气	氮氧化物	《固定污染源废气 氮氧化物的测定 定电位电解法》 HJ693-2014	3mg/m³
	二氧化硫	《固定污染源废气 二氧化硫的测定 定电位电解法》 HJ57-2017	3mg/m³
	非甲烷总烃	《固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相色谱法》HJ38-2017	0.07mg/m^3
	颗粒物	《环境空气 总悬浮颗粒物的测定 重量法》 GB/T15432-1995 及修改单	0.001mg/m³
无组织废气	氮氧化物	《环境空气 氮氧化物 (一氧化氮和二氧化氮) 的测定 盐酸萘乙二胺分光光度法》HJ479-2009 及修改单	0.005mg/m³
	二氧化硫	《环境空气 二氧化硫的测定 甲醇吸收-副玫瑰本胺 分光光度法》HJ482-2009 及修改单	0.004mg/m³
	非甲烷总烃	《环境空气 总烃、甲烷和非甲烷总烃的测定 直接进样-气相色谱法》HJ 604-2017	0.07mg/m ³
	PH 值	《水质 pH 值的测定 玻璃电极法》GB/T 6920-1986	/
	化学需氧量	《水质 化学需氧量的测定 重铬酸盐法》HJ 828-2017	4mg/L
	五日生化需 氧量	《水质 五日生化需氧量(BODs)的测定 稀释与接种 法》HJ 505-2009	0.5mg/L
废水	氨氮	《水质 氨氮的测定 纳氏试剂分光光度法》 HJ 535-2009	0.025mg/L
	悬浮物	《水质 悬浮物的测定 重量法》GB/T 11901-1989	4mg/L
	石油类	《水质 石油类和动植物油类的测定 红外分光光度 法》HJ 637-2018	0.06mg/L
噪声	厂界环境噪 声	《工业企业厂界环境噪声排放标准》GB 12348-2008	/

本项目监测仪器检定校准情况见表 8-2。

名称 型号 仪器编号 检校有效期 气相色谱仪 V5000 SLJC-SY-004 2022/03/26 紫外可见分光光度计 UV6100 SLJC-SY-007 2022/03/19 万分之一天平 ME-204/02 SLJC-SY-023 2022/03/19 十万分之一天平 SLJC-SY-024 2022/03/19 ME55/02 红外分光测油仪 JC-OIL-6 SLJC-SY-028 2022/03/19 pH计 PHS-3E SLJC-SY-029 2022/03/19 电热鼓风干燥箱 101-2A SLJC-SY-034 2022/03/19 生化培养箱 SPX-1508B SLJC-SY-038 2022/03/19 电子天平 FA124 SLJC-SY-097 2021/09/09 多功能声级计 AWA5688 SLJC-XC-002 2022/03/25 声校准器 AWA6021A SLJC-XC-004 2022/03/17 大流量烟尘(气)测试仪 YQ3000-D SLJC-XC-028 2022/05/21

YQ3000-D

MH1025 型

MH1025 型

MH1025 型

MH1025 型

SLJC-XC-029

SLJC-XC-031

SLJC-XC-032

SLJC-XC-033

SLJC-XC-034

2022/05/09

2022/05/09

2022/05/21

2022/05/09

2022/05/21

表 8-2 仪器质控信息一览表

8.2 质量保证措施

大流量烟尘(气)测试仪

恒温恒流大气/颗粒物采样器

恒温恒流大气/颗粒物采样器

恒温恒流大气/颗粒物采样器

恒温恒流大气/颗粒物采样器

废气验收监测质量控制与质量保证按照《固定源废气监测技术规范》 (HJ/T397-2007)、《固定污染源监测质量保证与质量控制技术规范(试行)》 (HJ/T373-2007)、《大气污染物无组织排放监测技术导则》 (HJ/T55-2000)以及各监测项目标准分析方法规定的质量控制要求执行。尽量避免被测排放物中共存污染物因子对仪器分析的交叉干扰;被测排放物的浓度应在仪器测试量程的有效范围即仪器量程的 30~70%之间。所有监测仪器设备经过计量部门检定并在有效期内,现场监测仪器使用前经过校准或标定,监测数据实行三级审核。

噪声监测布点、测量方法和频次按照相关标准执行,测量仪器和校准仪器定期检验 合格,并在有效期内使用,声级计在测试前后用标准发生源进行校准,测量前后仪器的 灵敏度相差小于 0.5dB (A)。

8.3 质控信息

8.3.1 噪声监测质量控制

测量仪器使用声校准器。测量方法及环境气象条件的选择按照国家有关技术规范执行。仪器使用前、后均经 A 声级校准器校验,误差控制在±0.5 分贝以内。噪声监测质控结果见表 8-3。

表 8-3 噪声监测质控结果一览表

ri #u	测长沙里	- > - = 346	昼间
日期	测点位置	主要声源	结果 dB(A)
	厂界东侧外 1m 处 N1		50.4
2021/05/14	厂界南侧外 1m 处 N2		51.4
2021/05/14	厂界西侧外 1m 处 N3		52.2
	厂界北侧外 1m 处 N4	扣标唱文	52.8
	厂界东侧外 1m 处 N1	机械噪音	51.4
2021/05/15	厂界南侧外 1m 处 N2		52.4
2021/05/15	厂界西侧外 1m 处 N3		53.5
	厂界北侧外 1m 处 N4		54.4

九、验收监测结果

9.1 生产工况

2021年5月14~15日, 合肥森力检测技术服务有限公司对广德旭升涂装有限公司年喷饰金属表面30万平方米项目进行了竣工环境保护验收监测, 废水、废气、噪声监测以及环境管理检查同步进行。

表 9-1 监测期间生产报表

验收监测期间广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目生产负荷为 92.5%,两天生产负荷正常,各项污染治理设施运行正常。

9.2 污染物排放监测结果

9.2.1 废水

广德旭升涂装有限公司生活污水及少量冷却废水经过化粪池预处理处理后,达到 邱村镇污水处理厂接管标准后,经园区污水管网汇入邱村镇污水处理厂。

			1	监测点位:	废水总排	口				\1.1 . =
检测项目		2021/	5/14				执行 标准	达标 情况		
	第一次	第二次	第三次	日均值	第一次	第二次	第三次	日均值	7,7,7	113.50
pH 值 (无 量纲)	7.18	7.15	7.23	7.18	7.20	7.18	7.21	7.197	6—9	达标
化学需氧量 (mg/L)	66	65	69	66.67	68	69	67	68	450	达标
五日生化 需氧量 (mg/L)	21.2	21.1	21.5	21.27	20.8	21.0	20.7	20.83	180	达标
悬浮物 (mg/L)	10	11	10	10.3	11	11	10	10.67	30	达标
氨氮 (mg/L)	1.45	1.44	1.45	1.447	1.45	1.47	1.46	1.45	200	达标
石油类 (mg/L)	0.44	0.44	0.40	0.427	0.44	0.43	0.42	0.43	/	/

表 9-2 废水检测记录表

监测结果:广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目生活污水

COD、BOD5、SS、NH3-N、石油类均满足邱村镇污水处理厂接管标准限值。

9.2.2 废气

(1) 无组织废气

本次验收监测在厂边界外设置无组织监控点位,根据项目所处地理位置,结合当地当时气象特征和污染物排放特点在上风向设置1个参照点,下风向设置3个监测点,每天监测3次,共监测两天。无组织废气检测结果见表9-3。

			检	测结果 (mg/n	n³)	毎日	执行	\1.1 →
检测项目	采样时间		下风向 (G2)	下风向 (G3)	下风向 (G4)	最大浓度	标准 限值	达标 情况
		第一次	0.219	0.221	0.223	MX	MXIEL	
	5/14	第二次	0.218	0.222	0.224	0.26		
			0.224	0.224	0.26			
颗粒物		第一次	0.219	0.219	0.221		1.0	达标
	5/15	第二次	0.222	0.220	0.224	0.224		
		第三次	0.218	0.220	0.222			
		第一次	0.46	0.47	0.49			
非甲烷总	5/14	第二次	0.52	0.46	0.53	0.53		
 烃 (以碳		第三次	0.58	0.47	0.49			
计)		第一次	0.51	0.50	0.50		4.0	达标
(mg/m^3)	5/15	第二次	0.52	0.68	0.56	0.68		
		第三次	0.53	0.50	0.50			

表 9-3 无组织废气检测结果 (单位: mg/m³)

监测结果:项目无组织颗粒物、非甲烷总烃的排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级排放标准限值。

(2) 有组织废气

本项目主要废气检测物为非甲烷总烃、NOx、颗粒物和 SO₂。热风炉(固化工序)产生的燃气废气经活性炭吸附后由 15m 高排气筒达标排放;喷涂工艺产生的颗粒物经"滤芯—旋风—滤芯"处理后由 15m 高的排气筒排放。

监测结果:项目有组织颗粒物、NOx、SO₂的排放满足《工业炉窑大气污染综合排放标准》(环大气[2019]56号)中的相关标准限值;非甲烷总烃排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级排放标准限值。

表 9-4.1 有组织废气监测结果

检测类别/采样点	检测类别/采样点位			1#排气(#F10 -> 目					
116- NEW -522 I-1	36 (2).	5	月 14 日进口		5月14日出口			- 排出口最 大浓度	执行标准	达标情况
监测项目	单位	第一次	第二次	第三次	第一次	第二次	第三次			
大气压	kPa	101.07	101.06	101.05	101.07	101.06	101.05	/	/	/
平均烟温	°C	143	145	142	43	45	44	/	/	/
烟道截面	m²	0.0706	0.0706	0.0706	0.0706	0.0706	0.0706	/	/	/
平均流速	m/s	8.62	8.83	8.52	8.89	9.05	8.76	/	/	/
含湿量	%	2.4	2.5	2.4	2.4	1.3	2.4	/	/	/
含氧量	%	18.1	18.0	18.2	18.4	18.3	18.5	/	/	/
烟气流量	m³/h	2191	2245	2164	2259	2301	2227	/	/	/
标干流量	m³/h	1377	1402	1363	1899	1924	1867	/	/	/
排气筒高度	m	/	/	/	15	15	15	/	/	/
颗粒物	mg/m³	45	41	42	10.4	9.8	10.0	10.4	30	达标
氮氧化物	mg/m³	11	14	12	4	5	4	5	300	达标
二氧化硫	mg/m³	< 3	< 3	< 3	< 3	< 3	< 3	< 3	200	达标
非甲烷总烃 (以碳计)	mg/m ³	7.05	7.88	8.56	1.04	0.93	1.05	1.05	120	达标

表 9-4.2 有组织废气监测结果

检测类别/采样点			1#排气管							
II de National est	36 (2).	5月15日进口			5	5月 15 日出口		排出口最	执行标准	达标情况
监测项目	单位	第一次	第二次	第三次	第一次	第二次	第三次			
大气压	kPa	101.06	101.05	101.04	101.06	101.05	101.04	/	/	/
平均烟温	°C	145	144	143	44	45	43	/	/	/
烟道截面	m²	0.0706	0.0706	0.0706	0.0706	0.0706	0.0706	/	/	/
平均流速	m/s	8.83	8.63	8.53	9.04	8.91	8.75	/	/	/
含湿量	%	2.4	2.5	2.5	2.3	2.3	2.3	/	/	/
含氧量	%	18.0	18.2	18.1	18.4	18.5	18.3	/	/	/
烟气流量	m³/h	2245	2195	2166	2297	2266	2223	/	/	/
标干流量	m³/h	1404	1374	1360	1927	1895	1871	/	/	/
排气筒高度	m	/	/	/	15	15	15	/	/	/
颗粒物	mg/m³	44	42	46	10.1	10.4	9.9	10.4	30	达标
氮氧化物	mg/m³	14	12	11	5	4	5	5	300	达标
二氧化硫	mg/m³	< 3	< 3	< 3	< 3	< 3	< 3	< 3	200	达标
非甲烷总烃 (以碳计)	mg/m ³	7.40	7.43	7.84	1.01	0.96	0.98	1.01	120	达标

表 9-4.3 有组织废气监测结果

检测类别/采样点(检测类别/采样点位			2#排气作	- 排出口最					
IA-Nai-vai in	34 12.	5月14日进口			5月14日出口			排出口取 大浓度	执行标准	达标情况
监测项目 	单位	第一次	第二次	第三次	第一次	第二次	第三次			
大气压	kPa	101.02	101.06	101.05	101.02	101.06	101.05	/	/	/
平均烟温	°C	24	24	23	25	25	24	/	/	/
烟道截面	m²	0.2827	0.2827	0.2827	0.2827	0.2827	0.2827	/	/	/
平均流速	m/s	12.2	12.4	12.3	12.9	13.1	13.0	/	/	/
含湿量	%	2.4	2.3	2.3	2.3	2.2	2.2	/	/	/
烟气流量	m³/h	12404	12594	12476	13177	13354	13242	/	/	/
标干流量	m³/h	10920	11103	11035	11754	11928	11867	/	/	/
排气筒高度	m	/	/	/	15	15	15	/	/	/
颗粒物	mg/m ³	121	127	112	17.2	16.2	18.0	18.0	120	达标

表 9-4.4 有组织废气监测结果

检测类别/采样点(2#排气作	- 排出口最						
IV- NIN 15를 보	34 th	5月15日进口			5月15日出口			排出口取 大浓度	执行标准	达标情况
监测项目 	単位	第一次	第二次	第三次	第一次	第二次	第三次			
大气压	kPa	101.01	101.05	101.09	101.01	101.05	101.09	/	/	/
平均烟温	°C	23	23	22	24	24	23	/	/	/
烟道截面	m²	0.2827	0.2827	0.2827	0.2827	0.2827	0.2827	/	/	/
平均流速	m/s	12.4	12.2	12.3	13.1	12.9	13.0	/	/	/
含湿量	%	2.3	2.3	2.4	2.2	2.2	2.3	/	/	/
烟气流量	m³/h	12576	12378	12504	13335	13151	13219	/	/	/
标干流量	m³/h	11119	10949	11090	11945	11785	11879	/	/	/
排气筒高度	m	/	/	/	15	15	15	/	/	/
颗粒物	mg/m ³	110	105	113	17.9	18.8	17.8	18.8	120	达标

9.2.3 噪声治理设施

根据本项目噪声源分布情况,在厂界东、厂界南、厂界西、厂界北外1米处共布设4个噪声测点。监测项目为等效连续A声级,监测频次为昼夜各1次,连续监测两天。

表 9-5 厂界噪声监测结果

日期	测点位置	昼间结果 dB(A)	执行标准限值 dB(A)
	厂界东侧外 1m 处 N1	50.4	
2021/05/14	厂界南侧外 1m 处 N2	51.4	
	厂界西侧外 1m 处 N3	52.2	
	厂界北侧外 1m 处 N4	52.8	65
	厂界东侧外 1m 处 N1	51.4	63
2021/05/15	厂界南侧外 1m 处 N2	52.4	
	厂界西侧外 1m 处 N3	53.5	
	厂界北侧外 1m 处 N4	54.4	

监测结果表明:验收监测期间,本项目厂界噪声可以达到《工业企业环境厂界噪声排放标准》(GB12348-2008)3类功能区标准。

十、验收监测结论

10.1 结论

广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目环保验收监测工作于 2021 年 5 月 14 日、5 月 15 日对废水、废气、噪声进行检测以及环境管理检查同步进行, 两天生产负荷为 92.5%。

- 1、广德旭升涂装有限公司能够执行"环评"等相关环保制度,"环评"及批复中的相关内容基本得到落实。
- 2、广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目热风炉(固化工序)、喷涂工序中产生的废气监测结果表明有组织颗粒物、NOx、SO₂ 的排放满足《工业炉窑大气污染综合排放标准》(环大气[2019]56 号)中的相关限值要求;非甲烷总烃排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级排放标准限值。无组织颗粒物、非甲烷总烃的排放满足《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级排放标准限值。
- 3、广德旭升涂装有限公司年喷饰 30 万平方米项目生活污水及少量冷却废水经过 化粪池预处理达到邱村镇污水处理厂接管标准后,经园区污水管网汇入邱村镇污水处 理厂。
- 4、广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目厂界噪声达到《工业企业厂界环境噪声排放标准》 (GB12348-2008) 表 1 中 3 类功能区标准。
- 5、广德旭升涂装有限公司固体废物已进行分类收集处理。本项目主要固体废物为生活垃圾、废活性炭。生活垃圾放置在垃圾箱中,由环卫部门做到日产日清;产生的废活性炭收集暂存后委托有危废处理资质的单位处置。

广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目满足环评批复的要求,对外排的废水、废气、噪声、固废进行了相应的收集处理。环保制度基本齐全,管理机构基本完备,环保体系运行基本正常。根据本次验收监测结果可知,该项目竣工环境保护验收监测废气、噪声、固废均能满足环境保护局提出的环评批复要求。本验收监测报告认为广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目竣工符合环境保

护验收条件,建议予以环境保护竣工验收。

10.2 建议

- 1、进一步加强车间工艺废气污染物排放管理,确保废气处理系统正常稳定运行, 废气排放达标,减少无组织废气排放对外环境的影响。
- 2、进一步加强噪声治理,尽量降低设备运行中产生的噪声,使噪声对外界的影响程度减少到最低。
- 3、加强固废暂存场所管理,进一步完善厂区内工业固体废物的暂存场所,设置规范化标识、标牌。

建设项目工程竣工环境保护"三同时"验收登记表

填表单位(盖章):

填表人 (签字):

项目经办人(签字):

块7	太甲仏 (吳衣八	(盆丁):			火日	经 少人(图	2十):				
	项目名称	年喷饰	i金属表面 米项	面 30 万平方 目		项目代码					建设地点	广德	· 经济技术开发[区北区
	行业类别	[C3360)]金属表 处理加	面处理及热 『工		建设性质			新建		项目厂区中心经 度/纬度	经度 119.42697912, 纬度 31.01618		31.01618583
	设计生产能力	年喷饰	i金属表i 米项	面 30 万平方 目		实际生产能力		年喷饰金	≿属表面 30 万立	平方米项目	环评单位	南京科湾	弘环保技术有限	责任公司
741	环评文件审批机关	广	德县环境	6保护局		审批文号		٢	「环审〔2013〕	124	环评文件类 型		报告表	
建设	开工日期		2014 年	7 月		竣工日期			2015年6月		排污许可证 申领日期			
项	环保设施设计单位				环	保设施施工单位					本工程排污 许可证编号			
目	验收单位				环	保设施监理单位					验收监测时 工况			
	投资总概算 (万元)		3000	0	环保:	投资总概算 (万元)			13.5		所占比例 (%)		0.45	
	实际总投资 (万元)		1300			环保投资 (万元)			30		所占比例 (%)		2.3	
	废水治理 (万元)	10	废气流	台理		声治理 (万元)	1.5	固废	合理 (万元)	2.0	绿化及生态 (万元)	5.0	其它 (万元)	0
	新增废水处理设施能力			,	新增	废气处理设施能力		•			年平均工作 时		2400h	
	运营单位		广德加	U升涂装有限2	公司	运营单位社会统一 代码(或组织机构					检测时间	20	21年5月14-1	5 日
污	污 染 物	原有 排放 量 (1)	本期工 程实际 排放浓 度 (2)	本期工程允 许排放浓度 (3)	本期工程产生量 (4)	本期工程自身削減量(5)	本期工		本期工程核定 排放总量 (7)	本期工程"以 新带老"削减 量 (8)	全厂实际排放总 量(9)	全厂核员 排放总量 (10)		排放 增减量 (12)
〜 上物	废水						_							
业排	化学需氧量						-							
建放	氨 氮						-							
设达	石油类						-							
项标	废气						-							
目与	二氧化硫						-							
详总	颗粒物						_							
填量) 控	氮氧化物						_							
控制	工业粉尘						_							
mil	工业固体废物						-							
	物 汽特其关目与 染征它的有项						-							
\ <u>\\\</u>	1 HEACHARD () +	- 124.1-			(10) (()	(0) (11) (0)	(4) (5)		\ /1\ 3		우 나 커트카드 티	T+++//	바 는 뭐니	—_T—

注: 1、排放增减量: (+) 表示增加, (-) 表示减少。2、(12)=(6) - (8) - (11), (9) = (4) - (5) - (8) - (11) + (1) 。3、计量单位: 废水排放量——万吨/年; 废气排放量——万标 立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升; 水污染物产生量、排放量——吨/年; 气污染物产生量、排放量——吨/年。

附件1 环评批复

广德县环境保护局文件

广环市 (2013) 124号

关于广德旭升徐装有限公司年喷饰表面 30 万平方米 项目环境影响评价报告表的批复

广播地开除装有限公司:

學公司服棄的《广德旭升漆装育服公司年增佈表面 30 万千方 東項目环境都有報告表》(以下開除《报告表》)收费。在書寫《程 長表》提出的各項污染防治措施后,項目建设从环保角度分析是 可行的。同想本項目在广德县经济开发区北区照到他块进行建设。 《相名表》可作为项目建设和竣工环境保护验收赖据。

- 一, 丰项刊工艺波到主要是对金属件进行人工上件。喻充, 自动唱涂、加干, 冷却, 下件处理; 主要建设内容: 生产生间一 脉(内设抛丸机, 双工位喻粉机, 燃煤嘴塑成水板, 商压糖电发 生器, 电烘箱等设备), 办公楼, 运输, 供水, 排水。供电、假 热等处运工程及公用工程, 环保工程等。
- 二、项目在具体实施建设过程市产格推环评报告所述生产工 艺及产品为重但那生产,并按环评要求认真器实以下几项环境为

亚防治工作1

- 1、做好项目地工期的污染防治工作, 加强对施工期杨尘的污 更防治、对施工过程产生的"三版"集中收集。按《报告表》等 水处理; 妥善处理工程油土; 施工结束后, 及时拆除临时建筑物 及網際電訊垃圾; 合理安排商業机械的施工时间, 非必須重使過 工工程禁止按问施工。施工期场界噪声执行《趁纸施工场界噪声 用值以 (GB) 252.5-96)。
 - 2、 針好厂区生活废水污染助治工作, 附生活度水采取化费 無, 地理式污水处理装置处理后综合利用, 厂区内污水产等未等 处理正接价势。
- 3、做好生产废气污染防治工作、核报告发坚束、热风炉质 气压 15 黑高排气筋外排。确保满足《工业炉密大气污染物排泄 标准》(GB9076-1996)相关标准限制要求:喷粉工序产生的粉尘 超喷粉白自营的脉冲过滤回收系统进行回收; 喷涂工序后族干工 序产生的看机废气经收集后经 15 来高排气筒外操。确保厂内外 排放气满足《大气污染物综合排放标准》(GB16297-1996)相关 照值要求; 他好酒水绅生、及助清理优泽粉生, 确保无理职特金 新足 L大气污染物统合排除标准》(GB16297-1996) 表 2 序面组 **织排放监控浓度限值要求。**
 - 4、做好生产国废污染资治工作,对生产过程抛出工序产生 的侦伤和麻损钢珠分类收集后外件。废活性发属于危险、收集后 交出有資质单位处理,并按照《危险废物贮存污染控制标准》 (GB18597-2001) 相关要求进行贮存; 生活垃圾交出环卫部门价

一处理。

5、从厂区生产设计。设备选型安装和布局上做好生产噪声污染防治工作、保证厂界噪声满足《工业企业厂界环境噪声播放标准》(GB12348-2008)3类区标准要求。

6、本项目在北区天然气接通前可利用煤进行供热;接通后。 全业应积极实施"煤改气",采用清洁能源进行供热;外购环氧 树脂,颜料等原料为混合加工好的粉末成品,不得在厂区内进行 混合搅拌工序。

7、本项目卫生防护距离为 50m, 项目卫生防护距离内不得新 排居民、学校等敏感建筑物。

三、严格按项目申报规模,工艺及厂址进行生产,如项目性 质、工艺、规模或地址发生变更需重新报批、

四. 项目在落实各项污染防治措施后及时报请联局组织建设 项目竣工环境保护验收,验收合格后力可正式投入生产。

附件2排污登记回执

固定污染源排污登记回执

登记编号:913418220787401050001P

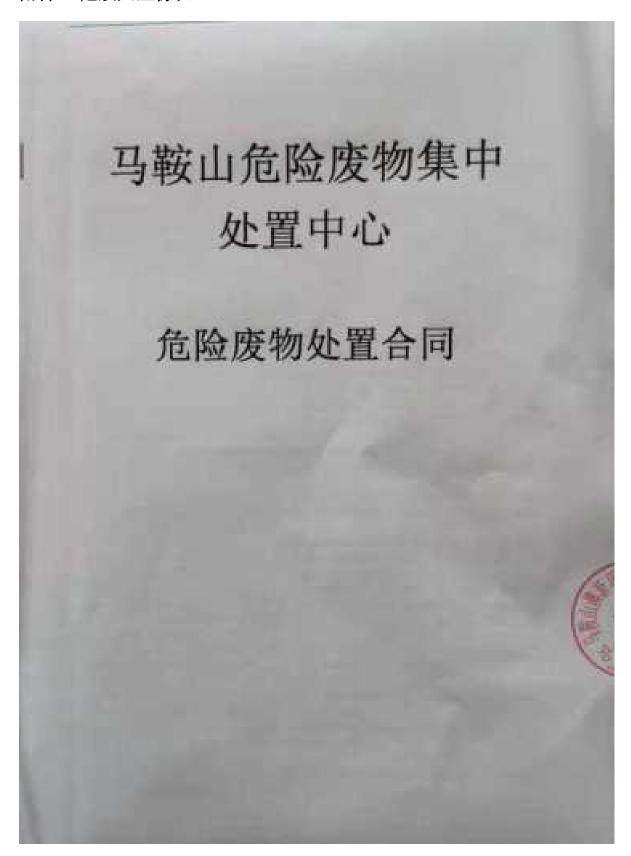
排污单位名称2 广德加开常装有限公司

生产经查场所地址。安徽省广德市经济开发区址区

成一社会信用代码: 913418220787401050

登起类型,26款口证核口变更

歷记日期; 2020年07月15日


有效期。2020年67月15日至2025年67月14日

35 (0.70%)

- (一) 他用位应与遵守生态环境保护法律法理、政策、标准等。依法履行生态序域保护者 行和支令、诺勒特量的应用用污染、整定200种程度的标准数。
- (三) 你单位对非内原记信息的我实施、准规程和实施性负责、标识和受化态外知识的性 有和社会协会监修。
- 12-1 到市登记业有效期份。信单位基本领配。汽油物理放表组。汽油物样放换对标准以 及建取的市场的创催条等情况发生类动物。自当自发功之以起一十日内进行发更预记。
- (四) 智華权若国美洲草原拟不再相信, 完及何并相用古原记表。
- (3) 你单位因生产规模扩大。因素物情的影響加等數是影響等與同時可有的。在數規 足及时期交換的自由於申請表。并再對知道所容用记表。
- · A. 有作品包含有效推销证据基本产品等,每个有效增加值二十日内进行基础整合。

附件3 危废处置协议

AXMINITERZETS. MERCHANT REAL PROPERTY. 甲方」互联由港新环保料具有限公司 乙次(广播期升涨装育保益司 超級《四华人民共和國國外理物內提环模為治疗》以及促進者的心信也以在 现记。转程终和关规定、乙古何度事代甲方处置历产生以局位责任。当己四年二 五五克分仍带。特征企本企同。以他共同原宁。 一、服务内容及有效施制。 1。 乙方为危险国营产毕单位委托甲方的其产生的是阿罗西亚行生用和位置 2. 危险变物的运输量被国立有关危险要的的运输司定性。 用之 5 m = 0 = 0 體。或甲方法納乙方至付回數明,如此共三年以一 一 … 为群出事情,以便型万四年入三年五 3. 相應《中华人民政和国际体度协会》2016年11 11 11 11 11 11 徒向后在地景级以上地方人民政府以及许可以上下专门。 请和位置废物的种类、产生量、黄白、灰存、如复等有关资料的中国。首先进步。 **的即选行废物则联络输和处置。** 4. 企同自效期日 2021 年 6 月 4 日 8 至 2022 年 5 月 3 日 1上 - 上 7 丁 十 1 1 1 1 1 1 五天由在一方提出合同以答。 二 乙丁香田均贝各 1。乙方有着任对在生产过程中产生的废物进行安全收集并分为是在了甲五人可以 **刘智等整内,并在责任根据国家有关规定。在政物的包条评点共同可信业共业**。 会国家标准 GR18597《危险发物贮存污染机制标准》的标签、标签上的证明主机 阅集合词所约定的规约名称一致。乙方他包装物和/或标修的小开合本自引要求。 **成是险难物所签名除与包提内改物不一批时,但为打打**事。 机量价值成分与范险股票标识标范的风格工厂 化 山一、 翼、周書后從周算。排除不規范、持江中五年。1 之为有义务物政。 乙方頭指用甲方要求提供规轉的加夫契利、包括支地产生。 片险处物性状。四级及运输的依据。 3. 帝国答订前(成处置前7 、 乙九司民协及四历什品的四万,1。这叫与一中一 性状。包裹及运输条件连行评估, 年且地以及古布能力处置。 符几万十年前约里 物,或者废物性状发生较大的变化。或因为某种特殊原因导致某些使决定的程效 爱生魔大变化, 乙万应及时通报型方, 井值斯联样, 重新确认是物名称, 重物曲 分、包装容勒、和处置新用等事项、绘双方协同这成一则首见后、笔订朴克合 间。如果乙方未及时告加甲方、则 1. 甲方有权拒绝操收。 2. 加固此學致消费物变成集。指導、條件、如實等や比較 = 12.11 面的。或异致化原注量费用增加,乙方用非用用代产品。 手里的財產会。臣是四位結構至 可知的位置可引 主, 选用需用证明人使是支票所见。由此、自企工的由于工、公司(1) **计量等方面的现场动词及处理服务专用认知与参**方。 4. 乙方的危险废物物核计划由乙方在专业可以时度当在规中从系统中提出中。

1. 中方负责被用国军负责规定和标准对益可责任的股票进行支票处理。 5 和 11 1

段相美加/7年初通过后,才能通知平方法所改进自由

三、甲方的亦任何又及

也有之用定象和边的位置的相关。此

AXHBIXC|-2021

- 2、甲方将旧定专人负责总的现代材料。处置。15章 报应贡计等。
- 3、甲方应协助乙方办理废物的中枢和废物种格性担手效。而6 N v 行之 5 11 1. 去环保部门办理的手触外。
- 四、废物的种类、散量。用多于是"人"下。
- 1、废物的种类、费量。如置商:

作号	放物种类	形也	年产品	2.632	NATION.	ACTIVITY.	(A) (A)	を作用した
	施州附领	报志	0.1	10.64	1008	902-249-08	N-1979	5000 FL/M
2:	建油桶	Milit	1	#1 FE	IIMS	900-041-49	NC 4570	900 活/哺
3.	松脂糖液 油	唐态	0.2	85 34	History	900-007-00-	在	5000 元/吨
4	政権流	四去	0.5	13/10	HW17	216-004-17	要抵集	5000 7c/=
Ti-	ग्रंहा	周を	0.5	\$2.14E	1017	3:16-094-17	有机物	50% 元/48
6	活性聚	何志	2	NE ME	11/19	000-011-03	羽植物	5000 ii. 🗎

- 1二/结算方式。甲方在对公方依何度切所证明。 (人) "))
- 置。何里方哲定是产支付别引获。1911年18年1
- 後勤時春之后依据は国情に単生行士思少井、平、ノーニートン
- 2、物运费: 处置费用包括运费。

五、双方约定的其他事项

- 1. 废物包装由乙方提供。
- 2. 合同执行期间,如因法多变更。许可证变更。主管机关要求,适定它不可证力 可思因。导致甲方无法收集或处置某类成物时。甲方可停止达率该物的改革和处 置应各并且不采担由此特素的一切用几。

六. 其他

- 1。本意美数置合何一年一签,一武三份,乙万二世,甲艺一件。
- 本合同如发生纠纷,双方应友好协商。介理解决、协照解决无量的、应回有责 所在放法院提起诉讼。

附件 4 生产日报表

监测期间生产报表

日期	设计生产能力	设计生产能力 (m²/d) 5月14日 5月15日 生产负荷(实际生产 (m²/d) 实际生产 (m²/d) 4 1000 936 914 92.5		生产负荷(%)
项目	(m ² /d)	实际生产 (m²/d)	实际生产 (m²/d)	上)
金属表面喷 饰	1000	936	914	92.5

附件 5 环保投资一览表

项目环保投资一览表 (单位: 万元)

项目	环保建设内容	环评投资 (万元)	实际投资 (万元)
废水	化粪池	2.0	10
/及/小	雨、污分流管网	2.0	10
	2 根 15m 高排气筒	1.0	3.5
废气	废弃回收装置 (活性炭吸附)	2.0	5.0
	通风设施	2.0	3.0
固体废 物	废物堆场	0.5	2.0
噪声	减震设施	0.5	1.5
绿化	绿化面积 1400m²	3.5	5.0
合计	/	13.5	30

附件 6 原材料及能源消耗一览表

原辅材料消耗表

序 号	类别	单位	型号	单位	环评年用量	实际年用量
1		环氧树脂	E12	t	9.00	30
2		树脂	6088	t	13.50	0
3		流平剂	503	t	0.38	0
4	原辅 材料	增光剂	701	t	0.38	0
5		颜料	/	t	1.01	0
6		蜡	/	t	0.11	0
7		填料	/	t	13.13	0
1		新鲜水	/	m ³	660	220
2	能源 材料	电	/	万 kWh	28235	10
3		天然气	/	m^3	40	29000

附件7 主要设备一览表

项目生产设备一览表

序号	设备名称	单位	型号	环评数量	实际数量
1	燃煤喷塑流水线	套	HXCRW-JPR	1	0
2	燃气喷塑流水线	套	/	0	1
3	双工位喷粉台	台	HXC-SGPT	1	1
4	高压静电发生器	台	HXC-GYJDFSQ	3	3
5	电烘箱	台	HXC-DHX	1	1
6	抛丸机	台	HXC-PWJ	1	0
7	热风炉	台	1	1	1

附件8 劳动定员及生产班制

环保投资及劳动定员核定

投资总概算:

投资总概算 3000 万元, 环保投资总概算 13.5 万元, 占总投资的 0.45%。 实际总投资 1300 万, 实际环保投资 30 万, 占实际总投资的 2.3%。

劳动定员及工作班制:

环评项目职工 10 人,不提供住宿,年工作时间 300 天,一班制,每 班 8 小时,年工作时间,7200 小时。

实际项目职工 11 人, 11 人厂区就餐, 0 人厂区住宿, 年工作时间 300 天, 单班制, 每班 8 小时, 年工作时间 2400 小时。

附件9 检测报告

合肥森力检测技术服务有限公司 检 测 报 告

报	告	縭	号	SLJC-HJ-20211440
委	托	单	位	广德旭升涂装有限公司
受	检	单	位	广德旭升涂装有限公司
检	测	类	别	委托检测

編 制: **本林店** 审 核: **外務** 批 准: **小路** 签 发 日 期: 2021 年 05 月 24 日 台侧直力检测技术服务有限公司

驱售编程: SLIC-HJ-20211440

说明

- 1. 报告未加盖本公司检验检测专用章无效,无相关责任人签字无效。
- 2. 报告增围涂改无效。
- 3. 未经本公司书面批准不得部分复制报告内容,全部复制除外。
- 对于送检样品,报告中的样品、信息由委托方声称,本公司不对其 真实性负责。
- 5. 对于送检样品,报告仅对关。样品负责。
- 6. 任何人不得使用本报告进行不当
- 对报告内容的异议请于收到报告之日起10天内向本公司提出,逾期不受理。
- 无CMA标识报告中的数据和结果,不具有社会证明作用,仅供委托 方内部使用。

本公司通讯资料:

单位地址:安徽省合肥市经开区始信路769号5楼

組改填码: 230601

联系电话: 158 5517 5899 / 0551-6882 6889

投诉电话: 138 6597 8099 公司网页: www.sljcjs.com

第2页 此16页

后但存力但因此的思想有限公司

超階層性 私北下村产次215年6

一、恰別東沢

要核单位	广加级开销更新推公约						
项目各样	广建恒开港	广思地开放影响以公司的农业					
项目地址	类测定/ 证债	STABLEMENT	可				
平样人 胜	MANUEL MEZETS PROCESS	三洋日間	2021/05/14-2021/05/15				
挥敲电源	SSSFIF	操伴日期	2021/05/14-2021/05/15				
拉里人肚	川界、1177年、6月、湘田	12.21 61 20	2021/05/15-2021/05/20				

二、主要仪器信息表

征報名称	存務型号	仪器编号	他亞/松康 特別相
THE SEC	V5000	5LIC-5Y-004	2022/01/26
wyd Day x x nn i	L/V6100	SLIC-5Y-007	2022/03/19
五分之一天學	HE THE BOWNS	SUC-5Y-023	2022/08/19
+五分子 ・	MESSAN	SLIC-SY-024	2022/01/19
rE9HSP/camin's	IL TIE	SUC-5Y-02B	2022/05/19
mich	171 Ng. SE	SUC-5V-029	2022/03/19
明的但此于规则	101-2A	SEIC SV-034	2022/01/19
生化等等理	5PX-150Bill	SLIC-SV-038	2022/03/19
地子夫字	FA134	SUC-5Y-097	2021/09/09
多功能中侧十	B866AWA	SUC-XC-002	2022/01/25
215/4th	AWASOZTA	SUC XC 004	2022/05/17
大き島地口 产口的状态	YQ3600-D	SUC-XC-028	2022/05/21
大連銀統二件の回式が	VQ3000-D	SLIG XC/029	2022/05/09
16国16年19VB-16区特別	MH12055	SUC-XC-031	2022/05/09
作出三天大心和斯特尔特技	MH1205/5	SLIC-XC-032	2022/05/21
但提出扩大气度或和导种种	MH120963	SUC-XC 033	2022/05/09
机基础原大气体的现在样的	MH1705/E	SUC-XC-034	2022/05/21

■ 3 301 AL 16 301

含能容力检测技术服务有限公司

個数個想 SLIC +U-20211440

三、检测体据表

样品类型	松洞線目	标准(方法)名称及侮辱(含年号)	松出用
	\$84540	(国国) (国际) (中国) (中国) (中国) (中国) (中国) (中国) (中国) (中国	20mg/m1
	10/2/00	(改变污染速度性, 在浓度物的特殊效 意識表) HJ 836-2017	1.0mg/m ¹
相能和统气	机制化加	(新元·5%(元年)	3mg/m!
	二類供給	(MIRTIGORNA) - INVANIONE INVANIANTA HI 5T 2017	3mg/m ¹
	#40060	(国际污染等度气 部計,甲戌和工中成功的政府区 "不断先数法》 H1 38-2017	0.07mg/m ³
	mich	(中級空間、英國河南的安全開建、重量法) GB/T 15432-1995及前原理	0.001mg/m
A control of an	原集化物	(非确坚何 图集化明一部区图4一部区图2的设置 超频图2.二字分光光度 由) HJ 479-3009及增数量	0.005mg/m
AMEND"	二氧化烷	(味噌で一、二氧化性の) 中断地域 ((水理学院が光光度)) H1 482- 2004以前後期	0.004mg/m
	非中国保险	外界空气 日虹 電路印刷板空間で設定 自然正信 (本来を選出)	0.07mg/m ³
	pitti	(* 4 Carry to) Cay (6170-1936	1
	化学常有重	E 1 C P THE MADE TO BE 12 HA BEST - 2017	4mg/L
新水	五円生化賞氣量	(XIII 14 C. WING (1-00 MIN THE STREET) HU 505-2029	0.5mg/L
SEC.	桃田	Exist and an analysis with the 535 2009	0.025mg/L
	18/94)	(V.II (I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I	4mg/L
	在主動	(水) 石油土((米)中()土()) (() (() () () () () () () () () () (0.06mg/L
1829	厂资本金额声	(工作の会に同時期間の事業制を担当 GB 12348-2008	1

斯4班 批16班

金尼森力能而技术服务有限公司

限告编号: SLIC HJ-20211440

四、有组织发气检测结果表

man cont	Marchel Marchel			校园	地區甲
率桿直位	松州以田	果样日	11	京州教理	(kg/h)
		1000	施工次	45	6.20×10
	100	2021/05/14	18.2%:	41	5.75×10
	109210	1 14	第3次:	42	5.72×10
	(mg/m²)	5	要取次	44	6.18×10
		2021/05/15	第2次	42	5.77×10
			網別次	46	6.26×10
		7	屋1次	- 11	1.51=10
		2021/05/14	原記次	14:	1.96×10
	MUNICIPES.		M3次	12	1.64×10
	(mg/m²)	Mile in the	MIX	14	1.97×10
1484WED			施政大	12	1,65×10
	(3)		100 K	- 11	1.50×10
	= Mistan (Ing/m²)	2021/05/14 S lokale ()	關1次	- 3	1
			第2次:	-3	1
			施3次	-3	1
			龍沙沙	<3	1
		2021/05/15	施2次	-3	-/_
			B0.3620	<3	1
		2021/05/14	- 題10次	7.05	9.71 ±10
			MEX	7.88	1.10×10
	年中時(Q120g/模性)。		開3次:	3.56	1.17×10
	(mg/m/fi	Total I	棚1次:	7.40	1:04×10
		2021/05/15	第2次	7.43	1.02×10
		7 7 7 7	關於	7.84	1:07×10
		Ame of	翻线	10.4	1.97×10
		2021/05/14	概念大	9.8	1,89×10
1418:5700:00	104(9)		調子次	10.0	1.87×10
[MINETSen]	4m(3/m/1		謝10次	10.1	1.95 × 10
		2021/05/15	要2次	10.4	1.97×10
		1	篇3次	9.9	1.85×10

第5页 供16票

合而森力植园或本现务有限公司

报告编号: SUC-H-20211440

四、有组织皮气检测结果续表

and the latest of the latest o			-	松到地里		
采样点位	检测项目	原样目	No.	ERRE	(kg/h)	
		1	B# 13%;	-4	7.50×10	
		2021/05/14	勝る次	5	9.62×10	
	推案技术	0.000	III 300;		7.47×10	
	(ring/m²)		M(10):	5	9.64×10	
		2021/05/15	1002次	4	7.58×10	
		0.0	順政大	5	9.36×10	
		10000	順1次	- 3	1	
		2021/05/14	服2次	9	1	
WHISHED	二氯化铯	1 7	1000000	<\$	1.	
(海鹿:15m)	(mg/m²)	Charles Co.	MIT(X)	<3	7	
	(3	· 建铁油的15	MZ(X)	- 3	1	
		The state of the s	/ 展展大	- 3	1	
	-in		A MITTER	1.04	1.97×10	
	# mm) Essuces of imp/m²)	20 10 15/14	国 2次	0.93	1.79 - 10	
			MIN.	1.05	1.96 x 10	
			1011次	1.01	1.95×10	
		2021/05/15	10(2)次	0.96	1.82×10	
			開致次 一	0.98	1.83×10	
	mices	2021/05/14	國1次	121	-132	
			期7次:	127	1.41	
**************************************			開始大	112	1.24	
24目代前进口	(mg/m/)		順1次	110	1.22	
		2021/05/15	順乙次	105	135	
			順款	113	1,25	
			MOSS	17.2	0.202	
	100	2021/05/14	MZ(X)	16.2	0.193	
2410 FCM1HC3 0MMC3 5 mg	300006		BI 30%	18.0	-0.214	
	(mg/m²)		M 180	17.9	-0,214	
		2021/05/15	2/5/8	18.5	-0.222	
			朝沙次	17.8	-0.211	

順本類 核16度

合正算力检测技术服务有限公司

股件编号: SUC-HI-20211440

E	THE RESIDENCE OF THE PARTY NAMED IN	ALC: UKA	CONTRACT REPORT	1000
11.	天组织度	-7400	STREET, SHO	LACK.

哈海项 图:	来祥自两	M 保神(成位		恰用结果	
III ANNALIS.	- PETERNI	3854-56126	頭1次	里2次	第3次
		_EXUING1	0.197	0.196	0.197
	2021/05/14	T-NUFKS2	0.219	0.218	0.224
	202 1702/14	FRUNGS	0.221	0.222	0.224
900E388		TRING4	0.223	0.224	0.26
(mg/m²)		_ERING1	0.196	b.198	0.195
	2021/05/15	TRUKSE	0.219	0.222	-0.218
	2021/09/13	不知由在	0.219	0.220	0.220
		FRUITG4	0.221	0.196 0.218 0.222 0.224 0.198 0.222 0.220 0.224 0.034 0.047 0.049 0.047 0.049 0.047 0.049 0.047 0.049 0.047 0.011 0.016 0.017 0.017 0.018 0.018	6,222
		金剛果	0.037	0.218 0.222 0.224 0.198 0.222 0.220 0.224 0.034 0.047 0.049 0.047 0.049 0.047 0.049 0.047 0.049 0.047 0.049 0.047 0.049 0.047	0.036
	2021/05/14	FRINGS	0.052	0.047	0.057
	202.1703714	TA TA	0.047	0.049	0.049
电影化物		NAMES .	0.044	0.047	0.046
(mg/m²)		LININGS	Display Disp	0.034	0.031
	2021/05/15	1-10/162		0.047	-0.049
	2021/03/13	FRUIGS	0.047	0.197	0.049
		TRIQUIG4	0.044		0.044
		T-1804(83)	0.011	רומים	0,010
	2021/05/14	FRMG2	0.017	0.016	0.017
	2921/03/14	TIMINGS	0.016	0.017	0.018
二朝他期		TRIMINGA.	0.219 0.218 0.221 0.222 0.223 0.224 0.196 0.198 0.219 0.222 0.219 0.220 0.221 0.224 0.037 0.034 0.052 0.047 0.049 0.049 0.044 0.047 0.034 0.034 0.052 0.047 0.049 0.049 0.040 0.047 0.040 0.047 0.040 0.047 0.040 0.047 0.041 0.011 0.017 0.016 0.016 0.017 0.017 0.018 0.017 0.018	-0.016	
hing/min		£RUNG1		0.011	
	2021 05 215	FRIday.	0.017	0.197 0.196 0.219 0.218 0.221 0.222 0.223 0.224 0.196 0.198 0.219 0.222 0.219 0.220 0.221 0.224 0.037 0.034 0.052 0.047 0.047 0.049 0.044 0.047 0.034 0.034 0.052 0.047 0.047 0.049 0.047 0.049 0.040 0.047 0.011 0.011 0.017 0.016 0.016 0.017 0.017 0.018 0.017 0.018	0.017
	2021/05/15	TRIP(3)	0.018	0.018	0,018
		下网络64	0.017	0:018	0.017

蘭7度 持16度

报告编号: SLIC-HJ-20211440

合肥库力检测技术服务有限公司

五、无组织库气检测结果续表

检测原则	COLUMN COMP	邪样亦位		检测结果		
12394611	果样目期	энчний	第1次	検測結果 第2次 0.39 0.52 0.46 0.53 0.40 0.52	第3次	
		_EXM)G1	0.37	0.39	0.38	
	2021/05/14	下风向G2	0.46	0.52	0.58	
		下风向G3	0.47	0.46	0.47	
排甲烷(0%(CIBG+)		下风的G4	0.49	0.53	0.49	
(mg/m ³)		_ERIAG1	0.38	0.40	0.34	
		T-Mpg2	0.51	0.52	0.53	
	2021/05/15	T-JQJAyG3	0.50	0.68	0.50	
		下风的64	0.50	0.39 0.52 0.46 0.53 0.40 0.52	0.50	

第8页 共16页

合肥森力检测技术服务有限公司

接告编号: SLJC-HJ-20211440

六、废水检测结果表

采样点纹	采样日期	检测项目		检测结果	
SACRECULAR.	3K1043 Mil.	fazerer III	第1次	第2次 7.15 65 21.1 1.44 11 0.44 7.18 69 21.0	第3次
	2021/05/14	pH值(无量纲)	7.18	7.15	7.23
		化学简单量(mg/L)	66	65	69
		五日生化常製量 (mg/L)	21.2	21.1	21.5
	EUC IJ USE 14	据原/mg/L)	1.45	1.44	1.45
		思浮物(mg/L)	10	- 11	10
etrado (Milliona		石油类(mg/L)	0.44	0.44	0.40
原水总册口		pH值(无量纲)	7.20	7.18	7.21
		化学简笔量(mg/L)	68	69	67
	2021/05/15	7	20.8	21.0	20.7
	2021/03/13	Name (mark)	1.45	1.47	1.46
		日本 日本 日本 日本 日本 日本 日本 日本		111	10
		5 Marmorita	0.44	0.43	0.42

第9页 共16页

报告编号: SLJC-HJ-20211440

台肥森力检测技术服务有限公司

七、陽声检测结果表

		1	8	M
检测点位	主要声源	检测日期	检测明间	检测选集 [dB(A)]
	61.6000m	2021/05/14	17:35	50.4
厂界东侧外1m处N1	\$100,000	2021/05/15	17:48	51.4
厂界南侧外1m处N2	***************************************	2021/05/14	17:41	51.4
	\$1,6636;W	2021/05/15	17:53	52,4
	an annual con-	2021/05/14	17:46	52.2
厂牌抵例外1m处N3	\$5.60KE/W	2021/05/15	17:58	53.5
	45.44.00.00	2021/05/14	17:52	52.8
厂牌北侧外1m处N4	机械加热	2021/05/15	18:04	54.4

第10页 共16页

合配育力检测技术服务有限公司

报告编号 SLJC-HJ-20211440

附件1: 现场参数检测结果表

检测类别	SHER	松田田田		检测结果	
/用样点位	3640 E346	TO POWER	第1次	第2次	第3次
无组织废气 (绘则是曰: 圆桌化物。 二氧化疏。 目中观总经 、 颗粒物)		元气压(kPa)	100.96	100.98	100.99
		4(III(C)	24.8	23.9	22.3
	*****	(日本江東)(174)	50	51	51
	2021/05/14	风通 (m/s)	7.3	1.2	1.1
		採用	55	东	無
		天气值况	119	19	89
	2021/05/15	大气(E(kPa)	100.96	100.98	101.01
. ephano		40(0)	25.4	23.8	21,4
		per method:	52	50	51
		>DEBlim/s	1.2	1.5	13
		Min	1 5	振	东
		Anual emi	10 mg		18
		大 DEUkPa)	101.07	100.98 1 23.9 51 1.2 5 18 19 100.98 1 23.8 50 1.1 55 18 19 17 101.06 1 145 16 0.0706 2 8.83 2.5 1 18.0 1 2245	101.05
		学的数据(C)	143	145	142
有新物质气:	Г	will (britmi)	0.0706	0.0706	0.0706
1例門開进口	7031 005 01 6	學的重建(m/s)	8.62	8,83	8.52
(地面頂耳: 賈東化物、 二氟化油、非甲烷总经	2021/05/14	会温泉(%)	2.4	2.5	2.4
. 報酬金元(会测量(%) 2.4 会就量(%) 18.1	18.0	18.2	
		据代统制(m*/h)	2191	族 图 100.98 23.8 50 1.1 55 图 101.06 145 0.0706 8.83 2.5 18.0	2164
		标于直量(m²/h)	1377	1402	1363

M 11 30 M 16 30

含患育力检测技术服务有限公司

版告编号: SLJC-HU-20211440

附件1. 现场参数检测结集表

检测类别	表版日期	特別16日		检测结果	
/架样点位	*HER	包御坂田	第1次	101.05 144 0.0706 8.63 2.5 18.2 2195 1.574 101.06 45	第3次
		大气压(Pri)	101.06	101.05	101.04
		平均相型(%)	145	144	143
AND CONTRACTOR		地流電車(H(m²)	0,0706	0.0706	0,0706
1 年报气度进口 (6) 原联证明: 原联定期。	2021/05/15	平均流速(m/x)	8.83	8.63	8.53
三年成功 中市	2021/05/15	含想象例	2,4	2.5	2.5
WINGSON.		含素原因	18.0	18.2	18.1
		线气烧度(m ¹ /h)	2245	2195	2166
		核干洗量(m²/h)	1404	2195 1374 101.06	1360
	2021/05/14	大學學院學學	101.07	101.06	101.05
		/ Acatan	43	45	44
		Z BUILT	0706	0.0706	0.0706
利田(RB)等:		PERSONAL PROPERTY AND ADDRESS OF THE PERSONAL PR	8.89	9.05	8.76
他海峡田: 国际化物		20 M(2)	2.4	1.3	2.4
二联代組、音甲烷品级 、物化物)		含氰基(%)	18.4	18.3	18.5
		類气定量(m*/h)	2259	.2301	2227
		标于洗量(m//h)	1899	1924	1867
		排气燃烧煤(m)	15	15	15

原12页 第19页

台尼森力拉斯技术服务有限公司

限性偏身: SLIC HJ-20211440

附件1: 现场参数检测结果表

检测类别 /来样点纹 有组织是气: 1+排气和出口 (空间周日: 图取代表, 二氧化是 事中院均应 用口的	来林日期	推测项目:		绘画信息	
	3KH16288	enzovanua.	961次	第2次	搬3次
		大气压(8%)	101.06	101.05	101.04
		平均関隊(で)	-44	- 45	43
		中国图 [[2][2][2]	0,0706	0.0706	0.0706
		学校选择m/6	9.04	8.91	8.75
CONTRACTOR INTO THE PROPERTY.	2021/05/15	食物量例》	2.3	23	2.3
		含氧基化		18.3	
		据"证此值(m//h)	2297	2266	2223
		标子供量(mt/h)	1927	1695	1871
		三十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	15	45 0.0706 8.91 2.3 18.5 2266 1695 15 101.06 24 0.2827 12.4 2.3 12594 11103 101.05 23 0.2827	.15
	2021/05/14	# DEBOOD	01/02	101.06	101.05
		PRODU	24	.24	23
		plin misoner	2827	0.2827	0.2827
		PER RIMAN	122	12.4	12.3
		含海塘河	2.4	23	2.3
		据"以此题(m*/h)	12404	12594	12476
WINDSHIP CO.		标子选维imVhi	10120	11103	11035
2 种气质进口 (检查库图、整形物)		大型三(30%)	101.01	101.05	101.09
		平均强 图(气)	23	23	22
		機関調整分配件	0.2827	0.2827	0.2827
	2021/05/15	率均衡量(m/s)	12.4	12.2	12.3
		的指数 对形式	2.3	2,3	Z,A
		INFORM (mr)/h/	12576	12378	T2504
	1	in 190 Brinshi	11119	10949	11090

图 23 四 图 14.四

限告编号: SLIC-HJ-20211440

合是某力检查技术服务有明公司

REPORT - TOTAL AND SO TOTAL TOTAL

检测类别	TO SECURE	地河切田		檢測信果	
相談 有理學 有理學 (本 (本 (本 (本 (本 (本 (本 (本 (本 (本	采样日期	AESMARIES	第1次	36.215t	第3次
		大气压(岭)	101.02	101,05	101.05
		平均层图(气)	.25	25	24
		特的图形(m2)	0.2827	0.2827	0.2827
		平均抗菌(m/s)	12.9	13.1	13.0
	2021/05/14	合排量(%)	2.3	2.2	2.2
		据写这篇(m-/h)	13177	13354	13242
		标于洗雕(m//b)	11754	11928	11867
		研气物高度(m)	15	15	15
	2021/05/15	沙雪鸭味点	101.01	101.05	101.09
		TOTAL TO	24	24	23
		Dinner.	2827	0.2827	0.2827
		(miles miles)	13.1	12.9	13.0
		2000年	2.2	2.2	23
		期气流量(m ¹ /h)	13335	1,3151	13219
		信子准集(mVh)	11945	11785	11879
		(IP气间用(IR)(m)	15	0.2827 13.1 2.2 13354 11928 15 101.05 24 0.2827 12.9 2.2 13151	15
	2021/05/14	(MIRITANIA)	1.3	-	1-1
線皮 哈朗球目: 广界环境場	EUZ 1/U5/14	天气情况	pu.	25 0.2827 13.1 2.2 13354 11928 15 101.05 24 0.2827 12.9 2.2 1,3151 11785 15	-
(NE)	2025 657 05	(FLB(rm/s)	1.2		-
	2021/05/15	天气情况	pa.	_	-

通14页 第16页:

第15页 共16页

报告编号: SLIC-HJ-20211440

合肥森力检测技术服务有限公司

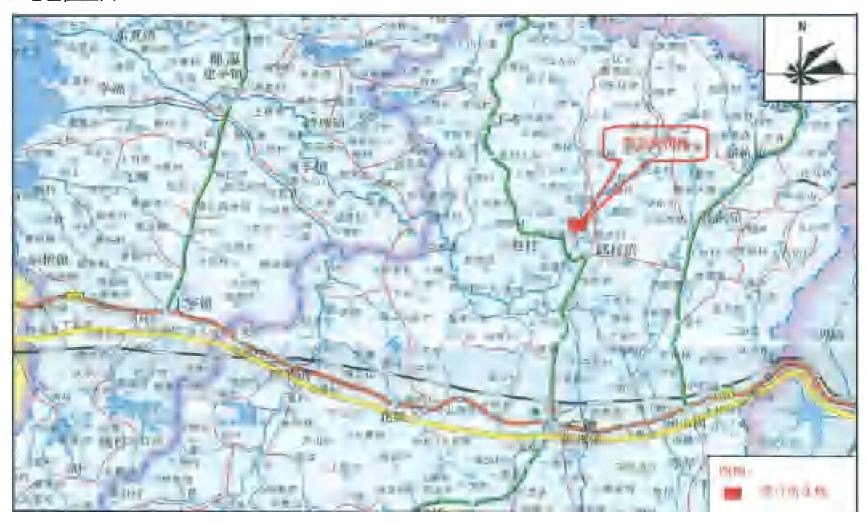
附件3: 现场采样照片

第16页共16页

附件10 自查报告

广德旭升涂装有限公司

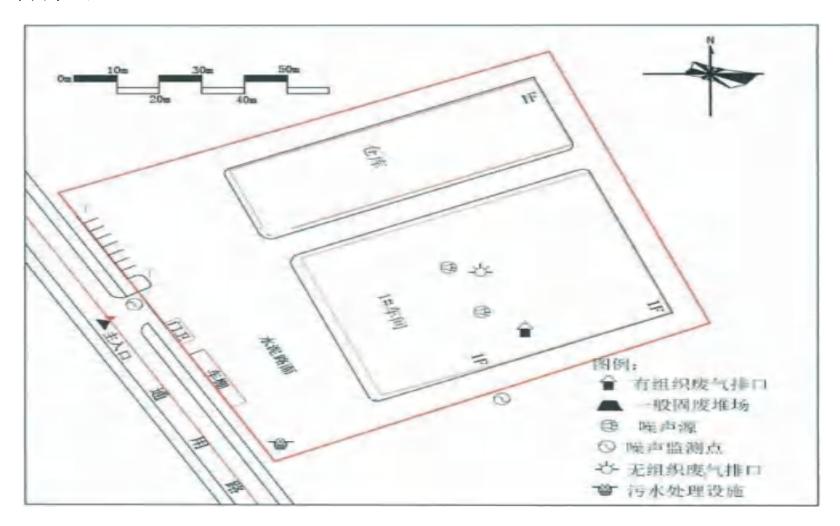
年喷饰金属表面 30 万平方米项目竣工环境保护验收自查报告 经核实我公司建设单位、项目名称、建设项目性质、建设地点未发生改变,采用 的生产工艺流程实际建设过程中取消了喷丸过程,污染防治措施与环评一致,建成的环保设施包括:


- 1、已做好项目设备安装期间的污染防治工作。尽量减少设备安装过程中对周边环境的影响。
- 2、已做好厂区雨污分流排水工作。项目废水主要是生活污水;生活污水及少量 冷却废水由化粪池处理设施处理达到邱村镇污水处理厂接管限值要求后经开发区园区 污水管网接入邱村镇污水处理厂。
- 3、已做好生产废气污染防治工作,本项目主要废气为非甲烷总烃、颗粒物、NOx和 SO₂。热风炉(固化工序)产生的燃气废气经活性炭吸附处理后经 15m 高 1#排气筒达标排放;喷涂工序中产生的颗粒物经"滤芯—旋风—滤芯"处理后经 15m 高 2#排气筒排放。
- 4、已做好噪声污染防治工作。本项目主要噪声污染源于双工位喷粉台等产生的噪声,采取措施为合理加装防震垫或设置隔消声片,加强场内绿化,种植常绿树种及距离衰减等。
- 5、本项目固体废物主要为员工生活垃圾、废活性炭等。职工日常生活中产生的生活垃圾,由企业集中收集后由当地环卫部门统一进行清运处理。本项目产生的废活性炭采取的处理措施为集中收集后暂存于危险废物暂存库,待到一定数量后委托有资质的相关单位进行处理。

自查结论:

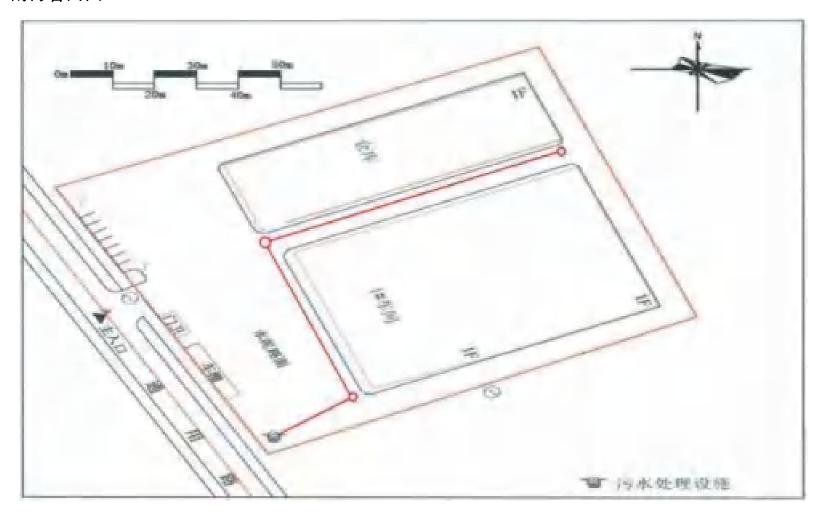
我公司环境保护手续齐全,建设项目未有重大变动,环境保护措施与主体工程同步建设.达到环境保护的验收条件。

广德旭升涂装有限公司 2021年6月


附图 1 地理位置图

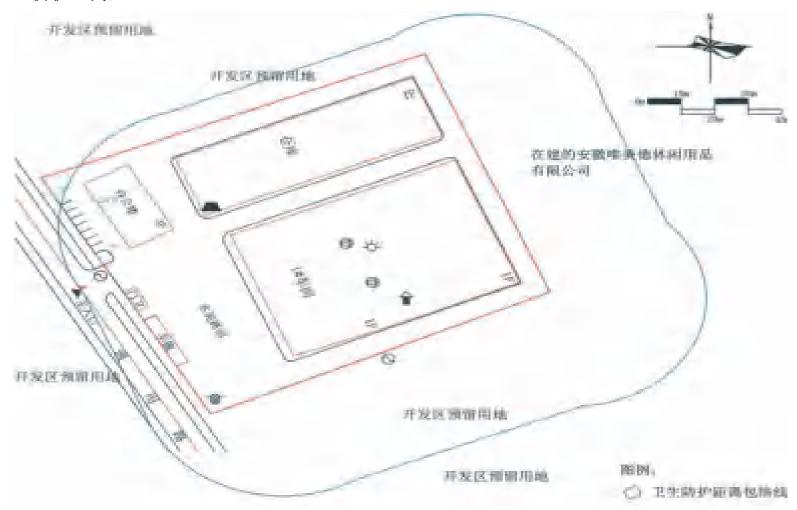
附图一: 项目位置地理图

第66页, 共75页


附图 2 平面布置图

附图二: 平面布置简图

第67页, 共75页


附图 3 雨污管网图

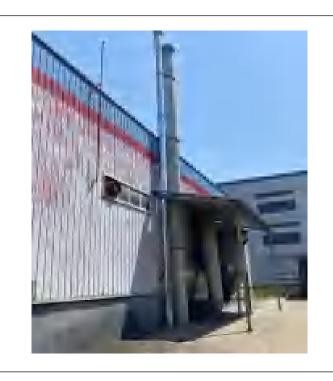
附图三: 雨污管网图

第 68页 , 共 75 页

附图 4 卫生防护距离图

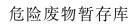
附图四: 卫生防护距离

第69页, 共75页


附图 5 环保设施及监测照片

废气处理装置

活性炭吸附装置



1号排气筒

1号排气筒



危险废物暂存库

检测照片

检测照片

第二部分 验收意见

- 一、专家意见
- 二、自主验收意见

一、专家意见

广德旭升涂装有限公司年喷饰金属表面30万平方米项目竣工环

境保护验收专家意见

2021年6月6日,广德旭升涂装有限公司在广德市组织召开了广德旭升涂装有限公司年喷饰金属表面 30万平方米项目建设竣工环境保护自主验收会。与会专家根据《广德旭升涂装有限公司年喷饰金属表面 30万平方米建设项目环境影响报告表》并对照《建设项目竣工环境保护验收暂行办法》和《建设项目竣工环境保护验收技术指南污染影响类》,严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范、本项目环境影响评价报告表和审批部门审批意见等要求对本项目进行验收。经认真研究讨论形成专家意见如下:

- 1、核实废气处置工艺、落实各个污染物处理措施。
- 2、加强危险废物管理,完善危险废物暂存库的建设与管理。
- **3**、加强污染物治理设施设备的运行和管理,确保稳定达到排放要求限值后排放。

验收结论:

验收组经现场检查并审阅有关资料,经认真讨论,认为广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目执行了环境影响评价制度,环境保护审查、审批手续完备,基本按照环评及批复的要求落实了污染防治措施,主要污染物达标排放。同意该项目通过竣工环境保护验收。

2021年6月6日

签到表

建设项目竣工环境保护

专家组签到表

建设单位,了元和南海里有限以下

建设项目。 异黄师房属基介为不到麦项目

姓名	财 位	限 称	联系方式	备注
紅紅	细胞的	和其	1891964183	7
i finda	Blesh Huf	j.	1185063005	
Brook	增加有明e46可放	如多	1334909875	

知 年6月6日

建设项目竣工环境保护验收

验收组签到表

建设单位: 广东恒等旅茶有胍饲 建设项目: 午暖時存得苦泊%科煤使目

姓名	单位.	职务/职称	联系方式	各注
是解	产产生	其线理	12190161334	
Both 1	HEN-THE	وني	13855763425	•
FraB)	TAR8PE	sats	189186418	3)
Front &	腦會的物物的	190 32	133490 /805	

201年6月6日

建设项目竣工环境保护验收

验收组签到表

建设单位: 广东恒等旅茶有胍饲 建设项目: 午暖時存得苦泊%科煤使目

姓名	单位.	职务/职称	联系方式	各注
是解	产产生	其线理	12190161334	
Both 1	HEN-THE	وني	13855763425	•
FraB)	TAR8PE	sats	189186418	3)
Front &	腦會的物物的	190 32	133490 /805	

201年6月6日

二、自主验收意见

广德旭升涂装有限公司

年喷饰金属表面30万平方米项目

竣工环境保护自主验收意见

2021年6月6日,广德旭升涂装有限公司在广德市组织召开了《年喷饰金属表面30万平方米项目》竣工环境保护验收会。根据《广德旭升涂装有限公司年喷饰金属表面30万平方米项目环境影响评价报告表》并对照《建设项目竣工环境保护验收暂行办法》和《建设项目竣工环境保护验收技术指南污染影响类》,严格依照国家有关法律法规、建设项目竣工环境保护验收技术规范、本项目环境影响评价报告表和审批部门审批意见等要求对本项目进行竣工验收。经认真研究讨论形成意见如下:

(一) 建设地点、规模、主要建设内容

建设地点:安徽省广德市经济开发区北区

建设性质:新建

生产产品: 金属表面喷饰

建设内容及规模: 年喷饰金属表面 30 万平方米

(二) 建设过程及环保审批情况

2013 年,广德旭升涂装有限公司投资 1300 万元,在广德县经济开发区北区建设"年喷饰金属表面 30 万平方米"项目。该项目 2013 年在广德县发展和改革委备案,项目编码为 2013-066 号。并在 2014 年 7 月开工建设,于 2015 年 6 竣工。广德旭升涂装有限公司于 2013 年委托南京科泓环保技术有限责任公司承担《广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目环境影响报告表》的编制工作。2013 年 9 月 29 日广德县环境保护局以广环审[2013]124 号文予以批复。

(三) 投资情况

项目实际总投资 1300 万元, 其中环保投资 30 万元, 约占总投资额的 2.3%。

(四)验收范围

本次验收范围为广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目。

- 二、项目变动情况
- 1、环评生产设备: 抛丸机 1 台、燃煤喷塑水线 1 套; 实际生产设备: 原喷丸处理工艺取消, 无抛丸机; 燃煤喷塑水线改建成燃气喷塑流水线。
- 2、项目主体建设: 环评辅助工程中 1 栋 3 层办公楼,实际项目未建设;危险废物堆场改建成危险废物暂存库;雨污分流,生活污水经化粪池进行处理环评设计能力为 1.0m³/d. 实际建设设计能力为 5.0m³/d
 - 3、环评设计项目职工为10人;实际项目职工为11人。
- 4、环评设计给水量为 660m³/a,由于员工实际用水量不大,实际给水量为 220m³/a,废水排水量环评设计为 192m³/a,由于产生废水不多,实际为 66m³/a。
 - 5、原辅材料环评设计用量为37.51吨,实际用量为30吨。
 - 三、环保设施建设情况

(一) 废水

根据项目生产特点,外排废水主要为生活污水,废水主要污染物有 COD、BOD₅、SS、NH₃-N 等。项目产生的生活废水及少量冷却废水经化粪池预处理达到邱村镇污水处理厂接管标准后,经园区污水管网汇入邱村镇污水处理厂。

(二) 废气

本项目主要废气为非甲烷总烃、颗粒物、NOx 和 SO₂, 热风炉(固化工序)产生的颗粒物、SO₂、NOx、非甲烷总烃经活性炭吸附后由 15m 高 1#排气筒达标排放; 喷涂工序产生的废气颗粒物经"滤芯—旋风—滤芯"处理后由 15m 高 2#排气筒达标排放。

(三) 噪声

本项目主要噪声污染源于双工位喷粉台等产生的噪声, 采取措施为合理加装防震垫或设置隔消声片, 加强场内绿化, 种植常绿树种及距离衰减等。

(四) 固体废物

本项目固体废物主要为员工生活垃圾、废活性炭。

(1) 一般固废

本项目产生一般固体废物主要为职工日常生活中产生的生活垃圾,采取的主要措施是由企业集中收集后交给当地环卫部门统一进行清运处理。

(2) 危险废物 (废活性炭)

本项目在烘干固化工序中产生的废气均采用活性炭吸附装置进行吸附处理, 因此会产生一定的废活性炭。采取的处理措施为集中收集后暂存于危险废物暂存 库. 委托有资质单位进行处理。

四、环境保护设施调试效果

(一) 废水

本项目采用雨、污分流的排水体制。雨水入雨水管网,废水来源于工作人员的生活污水和少量的冷却废水。生活污水及冷却废水经化粪池预处理达到邱村镇污水处理厂接管标准后,经园区污水管网汇入邱村镇污水处理厂。

(二) 废气

项目烘干固化工序和喷涂工序过程中产生的废气中有组织颗粒物、NOx、SO₂ 执行《工业炉窑大气污染综合排放标准》(环大气[2019]56号)中的相关限值要求; 非甲烷总烃排放执行执行《大气污染物综合排放标准》(GB16297-1996)表 2中的二级排放标准限值。无组织颗粒物、非甲烷总烃的排放执行《大气污染物综合排放标准》(GB16297-1996)表 2中的二级排放标准限值。

(三) 厂界噪声

项目场界噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008) 中的 3 类标准。

(四) 固体废物

一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》 (GB18599-2001) 中的有关规定; 危险废物执行《危险废物贮存污染控制标准》 (GB18597-2001) 中的规定。

五、验收结论

验收组经现场检查并审阅有关资料,经认真讨论,认为广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目执行了环境影响评价制度,环境保护审查、

审批手续完备,基本按照环评及批复的要求落实了污染防治措施,主要污染物达标排放。同意该项目通过竣工环境保护验收。

六、后续要求

- 1.加强污染治理设施设的运行和管理,确保稳定达标排放。
- 2.全面认真落实各项环保措施,加强内部环境管理,实现环境保护措施的有效运行。
 - 3.规范危废库的管理和运行,完善环保设施的运维记录。

广德旭升涂装有限公司 2021年6月6日

第三部分 总结报告

- 一、建设项目环境保护设施和措施执行情况总结报告
- 二、承诺函

建设项目环境保护设施和措施 执行情况总结报告

项 目 名 称: 年喷饰金属表面 30 万平方米次昂模具

建设单位:广德旭升涂装有限公司(盖章)

法定代表人: 吴涛

联 系 人: 吴涛

联系电话: 15190161334

邮 寄 地 址: 安徽省广德市经济开发区北区通用路 6 号

表一 建设项目基本信息

建设项目名称	年喷饰金属表面 30 万平方米项目
建设地点	安徽省宣城市广德市经济开发区北区
行业主管部门或隶属集团	安徽省宣城市广德市生态环境分局
建设项目性质(新建、改扩建、技术改造)	新建
环境影响报告书(表)审批机关 及批准文号、时间	广德县环保局,[2013]124号,2013年9月29日
审批、核准、备案机关及批准文 号、时间	广德县发展和改革委,2013-066,2013年
环境影响报告书(表)编制单位	南京科泓环保技术有限责任公司
环境监理单位	/
工程实际总投资(万元)	1300
环保投资(万元)	30
建设项目开工日期	2014年7月
建设项目竣工日期	2015年6月
建设项目投入试生产(试运行) 日期	2021年5月

表二 环境保护执行情况

	环评及其批复要求	实际执行情况	备注
建 内 (地 規 失 (集 (集)	广德旭升涂装有限公司投资 3000 万元新建"广德旭升涂装有限公司 年喷饰金属表面 30 万平方米"项 目。项目位于安徽省宣城市广德市 经济技术开发区北区,项目总占地 面积 11999.88m²,年喷饰金属表面 30 万平方米项目	1、实际年喷饰金属表面 30 万平方米项目,实际投资 1300 万元; 2、建设地点位于安徽省宣城市广德市经济开发区北区,本项目属于新建项目。	
	1、做好厂区生活废水。 作,对生活废水。 在废水里直接水。 在废水里直接水。 在废水里直接水。 在废水里直接水。 在水处理点。 在水水,确保水准、 在水水。 在水水。 在水水。 在水水。 在水水。 在水水。 在水水。 在水水。 在水水。 在水水。 在水水。 在水水。 在水。 在	1、根据对上海, 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平等。 生产水平, 大平, 大平, 大平, 大平, 大平, 大平, 大平, 大	相检内均到复求应测容达批要

求。

- 3、做好生产固废污染防治工作,对生产过程抛丸工序产生的铁锈和磨损钢珠分类收集后外售;废活性炭属于危废,收集后交由有资质单位处理,并按照《危险废物贮存污染控制标准》(GB18597-2001)相关要求进行贮存;生活垃圾交由环卫部门统一处理。
- 4、从厂区生产设计、设备选型安装和布局上做好生产噪声污染防治工作,保证厂界噪声满足《工业企业厂界环境噪声排放标准》 (GB12348-2008)3 类区标准要求。

- 置隔消声片,加强场内绿化,种植常绿树种及距离衰减等。

注:表二中建设单位对照环评及其批复,就项目设计、施工和试运行期间的环保设施和措施落实情况予以介绍。

表三 环境保护执行总体结论

- 一、建设项目工程变更的情况(对照环境影响评价文件及其批复要求,工程建设性质、规模、地点、采用的生产工艺或者防治污染、防治生态破坏的措施等发生变动的,对照《关于印发环评管理中部分行业建设项目重大变动清单的通知》(环办[2015]52号)的执行总结情况)
- 1、环评生产设备: 抛丸机1台、燃煤喷塑水线1套; 实际生产设备: 原喷丸处理工艺取消, 无抛丸机; 燃煤喷塑水线改建成燃气喷塑流水线。
- 2、项目主体建设:环评辅助工程中1栋3层办公楼,实际项目未建设;危险废物堆场改建成危险废物暂存库;雨污分流,生活污水设化粪池进行处理环评设计能力为1.0m³/d,实际建设设计能力为5.0m³/d
 - 3、环评设计项目职工为10人;实际项目职工为11人。
- 4、环评设计给水量为 660m³/a,由于员工实际用水量不大,实际给水量为 220m³/a;废水排水量环评设计为 192m³/a,由于实际产生过程主要是生活废水及少量冷却废水,实际为 66m³/a。
 - 5、原辅材料环评设计用量为37.51吨,实际用量为30吨。
- 二、建设项目环境保护设施和环境保护措施的落实情况

(一)废水

本项目采用雨、污分流的排水体制。雨水入雨水管网,废水来源于工作人员的生活污水和少量的冷却废水。污水经化粪池预处理后,达到邱村镇污水处理厂接管标准后,经园区污水管网汇入邱村镇污水处理厂。

(二)废气

项目烘干固化工序采用使用热风炉,燃料采用天然气,燃烧废气中有组织颗粒物、NOx、SO2执行《工业炉窑大气污染综合排放标准》(环大气[2019]56号)中的相关限值要求;非甲烷总烃排放执行执行《大气污染物综合排放标准》(GB16297-1996)表2中的二级排放标准限值。无组织颗粒物、非甲烷总烃的排放执行《大气污染物综合排放标准》(GB16297-1996)表2中的二级排放标准限值。

(三)厂界噪声

项目场界噪声排放执行《工业企业厂界环境噪声排放标准》(GB12348-2008) 中的 3 类标准。

(四)固体废物

- 一般工业固体废物执行《一般工业固体废物贮存、处置场污染控制标准》 (GB18599-2001)中的有关规定;危险废物执行《危险废物贮存污染控制标准》 (GB18597-2001)中的规定。
- 三、建设项目施工建设情况、环保设施和措施执行情况等信息公开情况(对照《建

设项目环境影响评价信息公开机制方案》(环发〔2015〕162号)的执行总结情况)

本项目环境影响报告书编制信息、项目施工信息建设情况及环保设施及执行情况均以公开,接受社会监督。

四、建设项目施工建设过程中的环保投诉、环保违法行为的情况 无。

五、建设项目环境保护执行的总体结论

广德旭升涂装有限公司厂址位于安徽省宣城市广德市经济技术开发区北区;验收组经现场检查并审阅有关资料,经认真讨论,认为广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目执行了环境影响评价制度,环境保护审查、审批手续完备,基本按照环评及批复的要求落实了污染防治措施,主要污染物废气、废水、噪声达标排放。同意该项目通过竣工环境保护验收。

项目各项污染治理得当,经有效处理后可保证污染物稳定达到相关排放标准 要求,对外环境影响不大,不会降低区域功能类别,并能满足环评要求,社会效 益、经济效益较好。本项目采取有效的事故防范,减缓措施,项目环境风险水平 是可接受的。因此,从环保执行的角度看,本项目的建设符合环评及批复要求。

法定代表人: (签字)

建设单位(盖章):

年 月 日

广德旭升涂装有限公司

承诺函

宣城市广德市生态环境分局:

按照"广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目"建设项目环境影响评价文件及其批复(广环审〔2013〕124号)要求,我公司(单位)已落实了相应的环境保护设施和措施。为积极推动"广德旭升涂装有限公司年喷饰金属表面 30 万平方米项目"的建设项目竣工环境保护验收工作,我公司(单位)作出如下承诺:

- 一、保证提供的全部材料真实、完整、准确;
- 二、积极配合提供开展验收现场核查和技术审查的现场条件;
- 三、积极配合开展竣工环境保护验收工作;

四、接受社会公众的监督。

如因我公司(单位)弄虚作假、隐瞒事实,或者不配合竣工环境保护验收工作, 影响竣工环境保护验收工作,我公司(单位)将承担一切后果,并接受相应法律责任 追究。

特此承诺!

承诺单位(盖章): 法定代表人(签字):

年 月 日